
A Document-Based Neural Relevance Model for
Effective Clinical Decision Support

Yanhua Ran∗, Ben He∗, Kai Hui†, Jungang Xu∗ and Le Sun‡
∗School of Computer & Control Engineering, University of Chinese Academy of Sciences, Beijing, China

Email: ranyanhua16@mails.ucas.ac.cn,{benhe, xujg}@ucas.ac.cn
†Max Planck Institute for Informatics, Saarbrücken Graduate School of Computer Science, Saarbrücken, Germany

Email: khui@mpi-inf.mpg.de
‡Institue of Software, Chinese Academy of Sciences, Beijing, China

Email: sunle@iscas.ac.cn

Abstract—Clinical Decision Support (CDS) can be regarded
as an information retrieval (IR) task, where medical records
are used to retrieve the full-text biomedical articles to satisfy
the information needs from physicians, aiming at better medical
solutions. Recent attempts have introduced the advances of deep
learning by employing neural IR methods for CDS, where, how-
ever, only the document-query relationship is modeled, resulting
in non-optimal results in that a medial record can barely reflect
the information included in a relevant biomedical article which
is usually much longer. Therefore, in addition to the document-
query relationship, we propose a document-based neural rele-
vance model (DNRM), addressing the mismatch by utilizing the
content of relevant articles to complement the medical records.
Specifically, our DNRM model evaluates a document relative to a
query and to several pseudo relevant documents for the query at
the same time, capturing the interactions from both parts with
a feed forward network. Experimental results on the standard
Text REtrieval Conference (TREC) CDS track dataset confirm
the superior performance of the proposed DNRM model.

I. INTRODUCTION

To make better clinical decisions, physicians often seek
out for useful information from massive published biomedical
literature for help. Given the huge volume of the publications
and their rapid updates, it is necessary to develop systems to
assist physicians in retrieving the biomedical literature more
effectively. To achieve this, Clinical Decision Support (CDS)
systems aim at bridging the electronic health records to the
biomedical literature for patient care [1].

In general, CDS is regarded as an information retrieval (IR)
task, in which the queries are patient records and the docu-
ments are biomedical articles. Most of the existing approaches
are based on the traditional retrieval models which rely on the
exact match between the terms from the health records and
from the biomedical articles [1][2]. Such approaches have been
demonstrated effective in Text REtrieval Conference (TREC)
CDS tracks [1][2]. More recently, since deep learning promises
enormous improvements in IR [4][5], neural IR models based
on Word2Vec and the deep neural network (DNN) are also
introduced to solve CDS tasks [3], where a D2Q (document-to-
query) approach is developed to encode the cosine similarities
between the embeddings of patient records and the biomedical
articles. Intuitively, the usage of the embeddings incorporates
the latent semantic information of context, enabling to model

the matching signals beyond exact match, leading to improve-
ments over the classical retrieval models [3][5]. However, the
effectiveness of the neural approaches might be limited due to
the heterogeneous comparisons where a query is usually much
shorter than a document, resulting in the mismatch even when
they are highly relevant, which, unfortunately, is especially
serious in CDS tasks. In other words, it might be always the
case that a patient record may fail to cover different aspects
from a relevant biomedical article due to their difference,
making a model solely depending on the document-query
relationship underperformed.

To close this gap, in this paper, a novel document-based
neural relevance model (DNRM) is proposed to mitigate the
mismatch by incorporating the comparisons among different
articles. Put differently, as a complement to the document-
query matching, a query is expanded with several pseudo rel-
evant documents to utilize the homogeneous matching among
articles. In particular, given a patient record q and a biomedical
article d, N pseudo relevant documents for q from an initial
ranking are compared against d in terms of similarity, ending
up with N similarity values, which are fed into a deep neural
network to produce a scalar. Interpolated with the relevant
score from the initial ranking, the produced ranking score
thereby summarizes the matching between d and q with pseudo
relevant documents as the intermediary. Apart from that, the
document-query signals are also considered by summarizing
the document-to-query similarity akin to the above methods,
ending up with a relevant score directly based on d and q.
Ultimately, the two relevant scores are combined as the final
relevant score. Both parts and the combination are encoded
in a unified end-to-end neural network, enabling the model in
trading-off between the relevant signals from both parts. In
the end, the experimental results on the standard TREC CDS
2014 and 2015 (A) track confirm the superior performance of
the proposed DNRM model over CDS tasks.

The remainder of this paper is organized as follows. We
recap the related works and put our work into context in
Section II. Thereafter, in Section III, we describe the proposed
DNRM model. Experimental settings and evaluation results
are summarized in Section IV before we conclude this work
in Section V.



II. RELATED WORK

A. Conventional Retrieval Approaches and BM25

Information retrieval aims to retrieve the documents relevant
to a given user query. In general, the retrieved documents
are ranked by the degree of relevance to the query, which
is often measured by the scores given by IR models, such as
the classical BM25 model [6]. Most traditional IR models are
based on exact match, namely the count of the query terms in
the document. Different IR models have different weighting
and normalization schemes over these counts.

As one of the state-of-the-art traditional IR models, we
utilize BM25 to produce the initial run in our approach.
In addition, pseudo relevance feedback (PRF) is a popular
method for improving IR effectiveness by using the top-ranked
documents as pseudo relevance set, from which the most
informative terms are expanded to the original query. One
of the best-performing PRF methods on top of BM25 is an
adaption of Rocchio’s algorithm presented in [7], which is able
to provide state-of-the-art retrieval effectiveness on standard
TREC test collections [7].

B. Neural IR Models

In recent years, word embeddings and neural networks have
been successfully applied in many NLP tasks. While word em-
beddings learned by neural network approaches, Word2Vec [9]
for example, have already been explored in IR tasks [10][11],
neural networks’ influence on IR tasks is still remained to
be explored and has attracted researchers’ attentions. DSSM
[12], C-DSSM [13] and CLSM [14] utilize click-through data
to train a deep neural network to map queries and documents
into embedding representations and then the relevance score
for a given query-document pair is measured by the cosine
distance between their embedding representations. These three
models use titles of documents for retrieval, which are much
shorter than the full text of the documents. Instead of learning
embedding representations for queries and documents through
neural network, MatchPyramid [15] is based on interaction
signals between terms from two different pieces of text to be
matched. It first constructs a term-to-term matching matrix,
whose values are similarities (like cosine similarities of their
embeddings) of the corresponding two terms. Then a deep
neural network composed by convolutional neural network
(CNN) layers followed by an MLP is applied on the matching
matrix to obtain the final matching score for the given two
pieces of text. A later study of MatchPyramid models on ad-
hoc retrieval indicates that MatchPyramid can obtain close
results with traditional models, such as QLM and BM25,
but still worse than traditional models [4]. Guo et al. [5]
propose a novel relevance matching model named DRMM
using deep neural network for ad-hoc retrieval. DRMM is
also an interaction-based model which is based on the count
of similarities between query terms and document terms. It
computes a score for every query term of a given query
through a feed forward network and a term gating network
is used to fuse the scores to obtain the final matching score.

C. State-of-the-art CDS Methods

Palotti & Hanbury first utilize MetaMap to map original
query to Unified Medical Language System (UMLS) concepts.
After that, some relevant concepts are selected to expand
original query with different weights. Pseudo-relevance feed-
back is also applied to further expand the query [16]. Song
et al. expand original query by adding the relevant MeSH
terms of the titles and snippets retrieved by Google [17].
In addition to query expansion, learning-to-rank algorithms
based on pointwise or pairwise and a query term position-
based approach are applied to re-rank the initial results [17].
Considering that the documents in CDS task are very long,
Cummins et al. apply a document language model SPUD [18]
to improve the retrieval performance [19]. Abacha & Khelifi
explore several query expansion methods utilizing MeSH and
DBpedia terms and several result fusion approaches, such
as rank-based and score-based approaches, are explored to
improve performance [20]. Choi & Choi incorporate the query
types (diagnosis, test and treatment) information by training
a classifier to rank documents and then the topic-specific
ranking score is fused with the relevance score given by
query likelihood model (QLM) with query expansion [21].
Balaneshin-kordan et al. extract unigrams, bigrams and multi-
word UMLS concepts from different sources, such as queries,
pseudo-relevance feedback documents and external knowledge
resources, and then use the Markov Random Field (MRF)
model to rank documents [23] .

Gurulingappa et al. [25] propose a semi-supervised method
that takes the advantages of pseudo-relevance feedback, se-
mantic query expansion and document similarity measures
based on unsupervised word embeddings. Firstly, terms ex-
panded by the UMLS concepts and document titles in the top-k
pseudo relevance feedback set are extracted and added with
a weight of 0.1 to the initial query. Secondly, by using the
unsupervised word embedding method, centroids of articles
are computed based on the abstract, the title or the journal title.
Finally, ranking scores obtained from PRF, UMLS expansion
and word embedding document distances are used as features
in the supervised learning to rank model.

Yang & He explore to integrate the semantic similarity
between embeddings of the patient record and biomedical
article to improve the performance of CDS system [3]. The
semantic similarity score ultimately is interpolated with the
BM25 baseline model to obtain the final score, which is
utilized to re-rank the baseline results.

III. DOCUMENT-BASED NEURAL RELEVANCE MODEL

In this section, we describe the proposed DNRM which is
summarized in Figure 1. Given a document-query pair as well
as several pseudo relevant documents via relevant feedback,
there are two components in parallel: the component which
consumes the similarity between a document and the indi-
vidual terms from a query (D2Q), and the component which
digests the similarity between a document and all documents
from the relevance feedback (D2D). In both components,
features are first extracted in terms of a variant of cosine



Fig. 1. The architecture of the proposed DNRM model. d is a document to be evaluated relative a query q. There are two components in parallel: the
document-to-query (D2Q) in the left and the document-to-document (D2D) in the right. Scores from both parts are combined to generate the ultimate
relevance score.

similarity, and subsequently several dense layers are employed
to summarize these signals with a scalar. Ultimately, another
dense layer is utilized to combine these two scalars from either
component and generate the relevance score.

A. Notation

A query q with m terms and a document di with n
terms are both represented as a sequence of terms, namely,
[q1, q2, · · · , qm] and [di1, di2, · · · , din]. In addition to a docu-
ment d, in the D2D component, top-N documents from an ini-
tial search result for q serve as the pseudo relevant documents,
which are denoted as Dq = {d1, d2, ..., dN}, where N is the
number of documents. To compute the similarity between a
term and a document or between two documents, one needs
to first embed them into a vector space. Thus, we denote
w2v(.) and d2v(.) as two embedding functions for a term
and a document respectively. A variant of cosine similarity,
denoted as csim(., .), is employed in this work, based on
which features F (d, q) and F (d,Dq) are extracted for D2Q
and D2D. The outcome scores from D2Q and D2D, as well
as the ultimate score, are denoted as relq(di, q), relDq (di, Dq)
and rel(di, q,Dq) respectively.

B. Model Architecture

Given the word embedding of all terms, we introduce the
D2Q and D2D components in this section.
Embed documents into vector space. When embedding a
document into a vector space, one desires to preserve the
semantic meaning of the document meanwhile employing

fewer dimensions for the sake of efficiency. Different from
the methods used by Yang & He [3], in this work, we embed
a document di by averaging the embeddings of all its terms,
weighted by the tfidf scores of individual terms. The formula
is summarized in Equation (1). The tfidf (t) represented the
tfidf score of a term t as indicated in the following, where
Nd is the total number of the documents in the collection,
tf (t) and df (t) denote the term frequency and the document
frequency of a term t respectively.

tfidf (t) = tf (t)log2
Nd + 0.5

df (t) + 0.5

Intuitively, a well-trained word embedding should preserve the
semantic meaning of a term [9]. When employing weighted
average of word embeddings in d, the terms contribute most
of the semantic meaning of d may also determine the derived
embedding most, leading to a semantic embedding for d.

vec(di) =
∑
dij∈di

tfidf (dij) ~dij (1)

The similarity function adopted in this paper, namely
csim(., .), is a variant of cosine similarity as in Equation (2).

csim(., .) = 0.5 ∗ cosine(., .) + 0.5 (2)

D2Q. Given a document d and a query q, we first compute the
similarity between d and individual query terms, resulting in
m similarities for a document-query pair, which is summarized
in the following equation.

F (d, q) = [csim(d, q0), csim(d, q1), · · · , csim(d, qm)]



Intuitively, this setting particularly caters for the facts that the
medical records are usually quite long in CDS and one would
desire to preserve the matching signals for all different query
terms in follow-up process. This actually enables the model
to take the query coverage into consideration by rewarding
the documents that can more comprehensively cover different
aspects in a query. Subsequently, l dense layers are employed
to learn from F (d, q), ending up with a scalar relq(d, q) which
represents the relevance between d and q. The dense layers are
summarized in the following.

hq
(0) = F (d, q)

hq
(1) = tanh(W (1)

q hq
(0) + bq

(1))

· · ·
hq

(l) = tanh(W (l)
q hq

(l-1) + bq
(l))

Intuitively, the dense layers not only consider how d satisfies
the information need represented by individual query terms qi,
but also take their interactions into consideration, making the
model fully aware of the relationship between q and d.
D2D captures the semantic relationship between a document
d and different pseudo relevant documents for a query q. Akin
to D2Q, the similarity is computed between d and individual
documents, namely, all di ∈ Dq , leading to a list of similarity
signals which are summarized in the following.

F (d,Dq) = [csim(d, d1), csim(d, d2), · · · , csim(d, dN )]

Subsequently, several dense layers are employed to compute
relDq

(d,Dq). Though dense layers are employed in both D2Q
and D2D, we argue that they are set up for different purposes.
Namely, when evaluating a document d, documents from Dq

actually serve as different prototypes, attempting to interpret
q from different perspectives in the space of d, mitigating the
gaps between q and d. Beyond that, the ranking of documents
are also employed by the dense layers as an indicator about
the confidence for a particular document.
Combination of the signals from D2Q and D2D. A dense
layer is employed to combine the relevance scores from D2Q
(relq(d, q)) and D2D (relDq (d,Dq)). Intuitively, relq(d, q)
directly evaluates based on d and q which is shared by estab-
lished relevance weighting models. Meanwhile, as a comple-
ment, relDq

(d,Dq) measures the relevance via several pseudo
relevant documents, where the information need is further
interpreted in details by different top-ranked documents. In
the combination, the model is learned to weight these two
signals and produce an ultimate score rel(d, q,Dq).

C. Loss Function and Model Training

Given a query q, a relevant document d+, and a non-relevant
document d−, a widely-used max-margin loss is employed for
training as in Equation (3).

L(q,Dq, d
+, d−)

=max (0, 1− rel(d+, q,Dq) + rel(d−, q,Dq))
(3)

In the training time, given a query q and the ground-truth
judgments, in each iteration, a relevant document is first

sampled, associating to which, five to ten (a random number)
non-relevant documents are sampled to pair with the relevant
document, ending up with five to ten triples for training,
e.g., (q, d+, d−), in the hope that the training data is fed to
the model stochastically. In this work, only binary judgments
are considered in the training. Adam [27] is employed for
optimization where batch size is set to 16 to fit our model
into the main memory.

IV. EXPERIMENT

In this section, we conduct experiments to compare the
proposed DNRM with multiple the state-of-the-art methods
from both unsupervised retrieval models and neural IR models.

TABLE I
THE RESULTS OBTAINED ON THE Summary FIELD OF THE TREC CDS

2014 TASK.

Method infNDCG infAP R-prec P@10 MAP

BM25 0.2640 0.0763 0.2264 0.3833 0.1668
SEM -QD 0.2688 0.0786 0.2318 0.3867 0.1719
DRMM 0.2666 0.0770 0.2270 0.3867 0.1675

DNRMQ 0.1700 0.0327 0.1206 0.1700 0.0839
DNRMD 0.2783 0.0799 0.2052 0.2733 0.1415

DNRMD-λ 0.3055∗ 0.0875 0.2409 0.4200 0.1803
DNRMDQ-λ 0.2903 0.0844 0.2319 0.4067 0.1739

A. Experimental Setting

Dataset. The experiments are based on the standard test
collection from TREC CDS Track 2014 and 2015 (A), which
includes a snapshot of the open access subset of PubMed
Central (PMC)1 on January 21, 2014. There are 733,138 full-
text biomedical articles of NXML format (XML encoded using
the NLM Journal Archiving and Interchange Tag Library) in
total. The title, abstract, keywords and body fields are extracted
for indexing after stemming with Porter’s stemmer and the
removal of stopword. On average a document includes 2,583
tokens. All experiments are conducted with Terrier [29].

Topics. The number of the topics of TREC CDS 2014 and
2015 (A) are both 30. These topics are medical case narratives
created by experts to serve as idealized representations of
actual medical records. Each topic includes summary and de-
scription fields, where the description is a more comprehensive
and verbose version of the topic. The results for both fields
are reported.

Competing methods. As one of the state-of-the-art unsu-
pervised models, BM25 with query expansion via Rocchio’s
PRF [7] is employed which is coined as BM25. Beyond that,
as one of the state-of-the-art neural IR models, the DRMM
model from Guo et al. [5] is implemented for comparison,
coined as DRMM . We also investigate another neural IR
model MatchPyramid [4], which, however, performs consis-
tently worse than DRMM in our preliminary experiments and

1http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/



is thereby omitted. In addition, we implement a semantic-
based approach from Yang & He [3] which is coined as
SEM -QD. In this work, DRMM is boosted by the interpo-
lation with BM25. For DNRM model, the results for two
variants are reported separately: the one only employs D2Q
features, coined as DNRMQ, and the one only employs
D2D features, coined as DNRMD. In addition, we also
interpolate the relevance score from BM25 with different
variants of DNRM , ending up with DNRMD-λ, representing
DNRMD with interpolation from BM25; DNRMDQ-λ, rep-
resenting DNRMDQ with interpolation from BM25, where
DNRMDQ means both D2Q and D2D features are employed.
Given a query, top-1,000 documents are first retrieved by
BM25 with Rocchio’s PRF. Thereafter, other baseline models
re-rank these search results.

Cross validation. Due to the limit number of labeled data,
all results are reported based on a five-fold cross validation.
Models are tuned based on mean average precision (MAP) as
in Guo et al. [5].

Metrics. We employ infNDCG of the top-ranked 1,000
documents as our primary metric, following the official setting
in TREC CDS task, considering that inferred metric is more
accurate when judging a relatively small number of docu-
ments and it distinguishes multiple levels (definitely relevant,
possibly relevant, not relevant) of relevance. In addition, in-
ferred Average Precision (infAP), R-Precision (R-Prec), P@10
and Mean Average Precision (MAP) are also reported for
a comprehensive comparison among different methods. The
latter four metrics only consider binary relevance. Significant
difference is reported based on 95% confidence level (p value
< 0.05) from a two-tailed Student’s t-test.

Hyper-parameters. The free parameters k1 and k3 of
BM25 are set to k1 = 1.2 and k3 = 1000, following the default
setting [6]. Grid search is applied to tune b, the number of
feedback documents ED, and the number of expanded query
terms ET . The size m in F (d, q) is set to the maximum length
of the queries. Zeros are padded to the tail of F (d, q) when
the length of a given query q is less than m. The size N in
F (d,Dq) is empirically set to 100 and 10 for TREC CDS 2014
and 2015 (A) respectively in our experiments. The number of
layers for the D2Q component’s and D2D component’s dense
layers are set to 3. The hidden layer sizes are set to the half
of their input feature’s size, which have little influence on
the retrieval performance based on our pilot experiments. The
matching network settings of DRMM follow the configuration
in Guo et al. [5].

Training of Word2Vec. The word embeddings are trained
based on a pool of top 1,000 documents returned by each of
the queries as suggested in Diaz et al. [10]. The implemen-
tation of Word2Vec2 from Mikolov et al. [9] is employed. In
particular, we employ skip-gram, set the dimension to 100, the
subsampling threshold to 10−3, and we train for 20 iterations.

TABLE II
THE RESULTS OBTAINED ON THE Description FIELD OF THE TREC CDS

2014 TASK.

Method infNDCG infAP R-prec P@10 MAP

BM25 0.2402 0.0701 0.2104 0.3267 0.1501
SEM -QD 0.2450 0.0727 0.2177 0.3533 0.1577
DRMM 0.2418 0.0702 0.2106 0.3300 0.1502

DNRMQ 0.1304 0.0234 0.1031 0.1233 0.0686
DNRMD 0.2556 0.0712 0.1948 0.3300 0.1403

DNRMD-λ 0.2493 0.0735 0.2146 0.3233 0.1552
DNRMDQ-λ 0.2558 0.0767 0.2074 0.3533 0.1578

TABLE III
THE RESULTS OBTAINED ON THE Summary FIELD OF THE TREC CDS

2015 (A) TASK.

Method infNDCG infAP R-prec P@10 MAP

BM25 0.2841 0.0680 0.2269 0.4900 0.1713
SEM -QD 0.2860 0.0709 0.2281 0.4900 0.1741
DRMM 0.2875 0.0709 0.2316 0.4833 0.1746

DNRMQ 0.1589 0.0265 0.1377 0.2000 0.0968
DNRMD 0.2825 0.0743 0.2232 0.4100 0.1682

DNRMD-λ 0.3086∗ 0.0814∗ 0.2478∗ 0.4933 0.1878∗
DNRMDQ-λ 0.3051 0.0788 0.2475∗ 0.4933 0.1869∗

B. Results

The evaluation results for the summary and the description
fields of TREC CDS 2014 and 2015 (A) are presented in Ta-
bles I - IV respectively, where the best results are highlighted
in bold. Significant improvements over the best baseline are
highlighted by a star. From Tables I - IV, it can be seen
that: two variants with interpolation from DNRM, namely,
DNRMD-λ and DNRMDQ-λ, outperform all baselines on
both summary and description in terms of infNDCG and
infAP. Considering that they are not interpolated with BM25,
the results of DNRMD are good enough to demonstrate
the effectiveness of the proposed D2D feature. In particular,
DNRMD obtains higher infNDCG, which is the primary
metric to be considered, on both summary and description of
TREC CDS 2014. They also achieve comparable infNDCG
with all the baselines on summary of TREC CDS 2015
(A). It appears that DNRMQ does not perform as good
as DNRMD. Our explanation is that the computation of
D2D similarity involves the use of term information from the
whole documents, in which the query information is already
included. Therefore, DNRMD outperforms DNRMQ in all
cases. Obviously, DNRMD-λ outperforms DNRMDQ-λ on
summary field. For description, DNRMDQ-λ obtains better
results than DNRMD-λ on TREC CDS 2014 and obtains
comparable results on TREC CDS 2015 (A). A possible reason
is that description field is much longer than the summary and
it can provide additional information which is not contained in
D2D feature. As for the significance tests, it should be noted

2https://code.google.com/p/word2vec/



that there are only 30 queries in both years, which makes it
hard to obtain significant difference.

TABLE IV
THE RESULTS OBTAINED ON THE Description FIELD OF THE TREC CDS

2015 (A) TASK.

Method infNDCG infAP R-prec P@10 MAP

BM25 0.2683 0.0668 0.2125 0.4200 0.1586
SEM -QD 0.2729 0.0690 0.2187 0.4267 0.1640
DRMM 0.2727 0.0680 0.2127 0.4267 0.1611

DNRMQ 0.1377 0.0241 0.1254 0.1700 0.0838
DNRMD 0.2484 0.0699 0.2047 0.3233 0.1449

DNRMD-λ 0.2864 0.0771 0.2315∗ 0.4200 0.1715
DNRMDQ-λ 0.2852 0.0779 0.2254 0.4300 0.1709

More analysis on DNRM. As mentioned in Section III,
document embedding is obtained through the weighted average
of the word embeddings in a document. Another choice is to
choose the top-K terms according to their weights. The size N
of the feedback document set Dq is also configurable. To have
a better understanding of DNRM model, we further conduct
the following experiments to study the impacts of the compu-
tation of document embedding and N . Firstly, we experiment
with K ∈ [0, 5, 10, ..., 100] (In particular, 0 represents the use
of all terms in the document), using N = 100 and N = 10
for TREC CDS 2014 and 2015 (A) respectively. Moreover, we
experiment with N ∈ [5, 10, ..., 100] with K = 0. The results
based on DNRMD-λ are displayed in Figures 2 and 3 in terms
of infNDCG, where the horizontal line shows the results for
BM25. From Figure 2 we can see that the performance of
DNRMD-λ model varies in a small range without an obvious
optimal peak with different K. A possible explanation is that
the final document embedding is dominated by the terms with
high weights. As for the different settings for N , the results, as
shown in Figure 3, tend to have optimal values. The highest
scores for summary and description witness a 20.3% and a
6.5% improvement relative to BM25 for TREC CDS 2014
respectively. Meanwhile, the best performance on summary
and description are 8.6% and 9.5% higher than BM25 for
TREC CDS 2015 (A). The results indicate that N should be
carefully set when applying the DNRM model.

Comparison to the best-performed Run in TREC. In
this section, we further take the best automatic and manual
runs [23] from TREC CDS 2015 (A) task as the initial results
in place of BM25 to investigate how DNRM model works
with strong baselines. The evaluation results are summarized
in Tables V and VI. From the results we can see even if the
initial results are obtained by strong enough baseline models,
the DNRM model can still improve on top of them. We argue
that this is very important since a re-ranker is supposed to
work well with all different baseline runs. More importantly,
it should improve, at least not hurt, the performance when
dealing with initial runs which have been ranked very well.

TABLE V
THE RESULTS OBTAINED ON THE Summary FIELD OF THE TREC CDS
2015 (A) TASK WHEN USING THE BEST automatic RUN AS THE INITIAL

RUN.

Method infNDCG infAP

WSU-IR 0.2939 0.0842

DNRM 0.3022∗ 0.0864

TABLE VI
THE RESULTS OBTAINED ON THE Summary FIELD OF THE TREC CDS

2015 (A) TASK WHEN USING THE BEST manul RUN AS THE INITIAL RUN.

Method infNDCG infAP

WSU-IR 0.3109 0.0880

DNRM 0.3253∗ 0.0917

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel document-based neural rel-
evance model (DNRM) for Clinical Decision Support (CDS)
task, in which the D2Q or D2D features are fed into several
dense layers to obtain a neural relevance score. Experimental
results indicate the proposed interpolation variants of DNRM
model can outperform all the baselines in most cases. In fact,
the results also indicate that by solely adopting D2D features
one can already achieve good results. The D2Q feature is
also an effective feature which is expected to enhance the
performance of other IR models. In the future, we plan to
incorporate field information as features input to the feed
forward network, since they have been demonstrated to be
useful [30]. We also plan to integrate the D2D features into the
recently proposed PACRR model that learns k-gram features
from a convolutional layer [8].
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