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ABSTRACT
Online search latency is a major bottleneck in deploying large-scale
pre-trained language models, e.g. BERT, in retrieval applications.
Inspired by the recent advances in transformer-based document
expansion technique, we propose to trade offline relevance weight-
ing for online retrieval efficiency by utilizing the powerful BERT
ranker to weight the neighbour documents collected by generated
pseudo-queries for each document. In the online retrieval stage, the
traditional query-document matching is reduced to the much less
expensive query to pseudo-query matching, and a document rank
list is quickly recalled according to the pre-computed neighbour
documents. Extensive experiments on the standard MS MARCO
dataset with both passage and document ranking tasks demonstrate
promising results of our method in terms of both online efficiency
and effectiveness.
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1 INTRODUCTION
The applications of the pre-trained contextualized models, like
BERT [7], T5 [20], and ELECTRA [2], have advanced the state-of-
the-art of information retrieval. Though being effective [14, 16, 17],
these large-scale models suffer from high latency [10]. As a result,
such models are mainly used to re-rank a shallow-pool (e.g. 1,000
documents) recalled by a faster retrieval model, like BM25 [21],
as the trade-off between the effectiveness and the latency require-
ments. More recently, there are efforts to exploit the strength of
BERT also in the first retrieval stage, hoping to further boost the
end-to-end retrieval effectiveness without introducing extra on-
line computation cost. One direction is to optimize the index us-
ing BERT or seq2seq models before searching the index with a
lexicon matching model, like BM25, by either employing BERT-
based term-frequency [5] or expanding documents with potential
queries [18, 19]. Another direction is to pre-compute the document
encoding offline and replace the expensive cross-attentions with
some lightweight relevance weighting mechanisms [11, 12].

Inspired by these works, we propose a novel approach to transfer
significant amount of computation offline, decomposing the expen-
sive online query-document matching to two parts, namely, the on-
line query to pseudo-query matching, and the offline pseudo-query
to document relevance weighting. Specifically, given a query in the
online system, some seed documents are first fetched, whose pre-
computed neighbour documents are also collected as candidates for
re-ranking. Inspired by doc2query [19], the neighbour documents
of a document are recalled offline using the pseudo-queries gener-
ated from this document. For a candidate document (a neighbour of
one seed document), we use the query to pseudo-query similarity
(pseudo-query is from this seed document) and the pre-computed
pseudo-query to document relevance to estimate the final relevance
of this candidate document. Therein, during online retrieval, the
expensive cross-attentions on the query-document pair is replaced
with the cheaper computation of query to pseudo-query similar-
ity, given that the computational complexity of transformer-based
model is quadratic to the sequence length. Evaluation at the TREC
2019 & 2020 Deep Learning Track demonstrates that the proposed
method achieves superior effectiveness with better latency.

The contributions of this work are threefold: 1)We propose a neu-
ral retrieval framework based on contextualized offline document
recall, replacing the expensive query-document cross-attentions
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with cheaper query to pseudo-queries similarity matching; 2) Com-
pared to several competitivemodels, including BM25+RM3, DeepCT
and doc2query, ourmethod shows superior effectiveness; and 3) Our
method has comparable latency with ColBERT, while consuming
markedly less disk space for storage. Some related data is available
at https://github.com/cxa-unique/offline-relevance-weighting.

2 RELATEDWORK
Transformer-based ranking models. Transformer-based rank-
ing models have recently emerged as a promising research direction.
For instance, BERT is applied to the MS MARCO passage retrieval
task by fine-tuning [16], then extended to the long document re-
trieval task [6]. Besides, the T5 model is used to generate target
words from documents/passages to indicate the relevance [17]. We
refer readers to [25] for a more comprehensive survey.
Index optimization. DeepCT [5] uses BERT to produce the term
frequency component of BM25 during indexing. doc2query [19]
uses transformer [22] to generate queries before appending them
in the end of the documents, then it relies on a BM25 index for
retrieval from the expanded documents. It is latter improved by
using the more powerful T5 model for the query generation [18].
Speeding up BERT ranker. Recently, there are ongoing efforts to
compress BERT using knowledge distillation [1, 8, 9]. Besides, early
exiting is also an efficient method wherein examples can exit from
the early layers of BERT if the prediction threshold is reached [23].
ColBERT [12] separately encodes query and document, and employs
aMaxSim-based late interactionmechanism.While ColBERT shows
efficiency superiority compared to BERT, the huge storage cost of
document embeddings remains a challenge [25].

3 METHOD
3.1 Overview
Framework.The proposed retrieval framework includes the offline
computation and the online retrieval. There are two components in
the offline system, namely, doc2query and doc2doc. Specifically, for
an input document 𝑑 , doc2query(𝑑) generates its pseudo-queries
and doc2doc(𝑑) seeks its neighbour documents from the same cor-
pus. In the online system, given a query, the lexicon matching
function BM25 [21] is first used to obtain a set of initial documents
coined as seed documents. All pre-computed neighbour documents
of these seed documents will be recalled, ending up with a set of
candidate documents for re-ranking. Thereafter, the relevance of
a candidate document is evaluated using the pseudo-queries of
some seed documents whose neighbour document set includes this
candidate document. Akin to MaxP [6], for a long document, we
segment it into several short passages before applying our method,
and the maximum relevance score among all passages is used.
Notation. Given a corpus C, each document is denoted as 𝑑 ∈ C.
The two components are coined as functions taking individual
𝑑 as input. As mentioned, they are denoted as doc2query(𝑑) and
doc2doc(𝑑) as in Eq. 1 and 2. The outputs of doc2query(𝑑) are𝑚
pseudo-queries, which are denoted as Q𝑑 = {𝑞1, 𝑞2, · · · , 𝑞𝑚}.

Q𝑑 = doc2query(𝑑) (1)

doc2doc(𝑑) in Eq. 2 fetches the neighbour documents of 𝑑 from the
corpus C, and the output is a set of 𝑛 neighbour documents of 𝑑 ,

coined as D𝑑 = {𝑑1, 𝑑2, · · · , 𝑑𝑛}.
D𝑑 = doc2doc(𝑑) (2)

We further denote the relevance between a (pseudo-)query and
a document pair as rel(𝑞, 𝑑); and the similarity between an input
query 𝑞 and a pseudo-query 𝑞 from doc2query(𝑑) as sim(𝑞, 𝑞). The
output of these functions is a scalar in [0, 1], indicating the degree
of relevance or similarity between the two input text pieces. Finally,
we denote R𝑞 = [𝑑1, 𝑑2, · · · , 𝑑𝑟 ] as the returned document ranking
from our retrieval framework when given a query 𝑞.

3.2 Offline System: Preparation of
Pseudo-Queries and Neighbour Documents

doc2query(d): Pseudo-queries generation produces short text
pieces for each document 𝑑 ∈ C. These pseudo-queries are relevant
to the document and may contain some keywords of the document.
Akin to [18, 19], for each document𝑑 ,Q𝑑 = doc2query(𝑑) generates
and stores𝑚 pseudo-queries by a seq2seq model.
doc2doc(d): Seeking the nearest neighbours of document 𝑑
in the corpus. For individual 𝑑 , using its pseudo-queries Q𝑑 , we
further fetch its neighbour documents that include some similar
relevant information. In particular, each pseudo-query 𝑞 ∈ Q𝑑

is used to recall a fixed number of documents from the corpus
using BM25. Putting all these documents together, we then select
𝑛 documents to form the neighbour document set of 𝑑 , which is
denoted as D𝑑 = doc2doc(𝑑), according to the recall frequency
and BM25 scores. Note that, by definition, a document is always
included in its own neighbour document set, namely, 𝑑 ∈ D𝑑 .
Pre-computation of relevance scores using BERT. The last
step in the offline system is the relevance weighting of pairs be-
tween pseudo-queries and neighbour documents from document
𝑑 ∈ C. In particular, for each 𝑞 𝑗 ∈ Q𝑑 and each 𝑑𝑖 ∈ D𝑑 , a BERT-
based ranker is used to evaluate their relevance, as in Eq. 3, which
is stored for the uses in the online system.

rel(𝑞 𝑗 , 𝑑𝑖 ) = BERT(𝑞 𝑗 , 𝑑𝑖 ) (3)

3.3 Online System: Neighbour Document
Re-ranking using Pseudo-Queries

Creation of the candidate document set for re-ranking. In
the online system, given a query 𝑞, the lexicon matching function
BM25 is first used to get top-𝑠 ranked documents to form a seed
document set, which is denoted as S𝑞 = {𝑑1, 𝑑2, · · · , 𝑑𝑠 }. For each
seed document 𝑑 ∈ S𝑞 , the pre-computed doc2doc(𝑑) is used to
fetch its neighbour document set D𝑑 . The union of neighbour
document sets of all seed documents is the final candidate document
set with 𝑟 documents, which is denoted as R𝑞 = {𝑑1, 𝑑2, · · · , 𝑑𝑟 }.
As 𝑑 ∈ D𝑑 , R𝑞 contains all seed documents in S𝑞 , namely, 𝑟 ≥ 𝑠 .
Relevance for the candidate documents. For each candidate
document 𝑑𝑖 ∈ R𝑞 , picking one seed document 𝑑 ∈ S𝑞 whose
neighbour document set includes𝑑𝑖 , namely,𝑑𝑖 ∈ D𝑑 , the relevance
of 𝑑𝑖 relative to 𝑞 can be approximated using the pre-computed
relevance between 𝑑𝑖 and each 𝑞 𝑗 ∈ Q𝑑 . As in Eq. 4, for 𝑞 𝑗 ∈ Q𝑑 ,
we can calculate the product between sim(𝑞, 𝑞 𝑗 ) and rel(𝑞 𝑗 , 𝑑𝑖 ),
ultimately using the maximum value among 𝑚 products as the
rel(𝑞, 𝑑𝑖 ). It can be seen that the online computation is reduced
from rel(𝑞, 𝑑𝑖 ) to sim(𝑞, 𝑞 𝑗 ) that will be introduced in Eq. 5. Note
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Table 1: Retrieval results of passage ranking task at TREC Deep Learning Track. Statistical significant difference relative to
docTTTTTquery at p-value < 0.01, 0.05, and 0.1 are denoted as ∗ ∗ ∗, ∗∗, ∗, respectively. 𝑠 is the number of seed documents.

Method TREC 2019 DL Passage Ranking Task (43 queries) TREC 2020 DL Passage Ranking Task (54 queries)
MRR NDCG@10 MAP R@100 R@500 R@1000 MRR NDCG@10 MAP R@100 R@500 R@1000

BM25 0.8245 0.5058 0.3773 0.4531 0.6816 0.7389 0.6585 0.4796 0.2856 0.5599 0.7278 0.7863
BM25+RM3 0.8167 0.5180 0.4270 0.4761 0.7237 0.7882 0.6360 0.4821 0.3019 0.6046 0.7864 0.8217
DeepCT 0.8178 0.5140 0.3866 0.4755 0.6705 0.7329 0.6522 0.5259 0.3248 0.6221 0.7625 0.8056
doc2query 0.8573 0.5333 0.3942 0.4707 0.6738 0.7414 0.6661 0.5258 0.3186 0.5953 0.7604 0.8088
docTTTTTquery 0.8884 0.6417 0.4625 0.5141 0.7561 0.8020 0.7326 0.6187 0.4074 0.7044 0.8107 0.8452

Ours (𝑠 = 30) 0.9155 0.6894∗∗ 0.5037∗∗∗ 0.5513∗ 0.7726 0.8155 0.7749∗ 0.6517∗∗ 0.4480∗∗∗ 0.7256 0.8352∗ 0.8598
Ours (𝑠 = 50) 0.9155 0.6924∗∗ 0.5100∗∗∗ 0.5574∗∗ 0.7789 0.8160 0.7899∗∗ 0.6637∗∗ 0.4530∗∗∗ 0.7276 0.8388∗ 0.8613

Table 2: Retrieval results of document ranking task at TREC Deep Learning Track. Statistical significant difference relative to
docTTTTTquery at p-value < 0.01, 0.05, and 0.1 are denoted as ∗ ∗ ∗, ∗∗, ∗, respectively. 𝑠 is the number of seed documents.

Method TREC 2019 DL Document Ranking Task (43 queries) TREC 2020 DL Document Ranking Task (45 queries)
MRR NDCG@10 MAP R@100 R@500 R@1000 MRR NDCG@10 MAP R@100 R@500 R@1000

BM25 0.8046 0.5190 0.3309 0.3948 0.6157 0.6966 0.8521 0.5271 0.4043 0.6110 0.7641 0.8085
BM25+RM3 0.7718 0.5169 0.3870 0.4189 0.6687 0.7504 0.8541 0.5248 0.4263 0.6392 0.7784 0.8260
docTTTTTquery 0.9097 0.6131 0.3641 0.4054 0.6314 0.7029 0.9278 0.5963 0.4434 0.6258 0.7697 0.8048

Ours (𝑠 = 30) 0.9277 0.6533∗∗∗ 0.4046∗∗∗ 0.4369∗∗∗ 0.6805∗∗∗ 0.7423∗∗∗ 0.9389 0.6065 0.4724∗∗∗ 0.6630∗∗∗ 0.8081∗∗ 0.8400∗∗∗
Ours (𝑠 = 50) 0.9382 0.6546∗∗∗ 0.4125∗∗∗ 0.4449∗∗∗ 0.6870∗∗∗ 0.7479∗∗∗ 0.9389 0.6064 0.4731∗∗∗ 0.6664∗∗∗ 0.8089∗∗ 0.8414∗∗∗

that 𝑑𝑖 can be given several relevance scores as it may be included
in the neighbour document set of more than one 𝑑 ∈ S𝑞 , wherein
the maximum is used as the final relevance score.

rel(𝑞, 𝑑𝑖 ) = max
𝑞 𝑗 ∈Q𝑑

sim(𝑞, 𝑞 𝑗 ) × rel(𝑞 𝑗 , 𝑑𝑖 ) (4)

Online computation: The similarity between the query and
the pseudo-query. For each seed document 𝑑 ∈ S𝑞 , as mentioned,
the similarity scores used in Eq. 4 between query 𝑞 and pseudo-
queries 𝑞 𝑗 ∈ Q𝑑 are computed by a BERT-based ranker as in Eq. 5.

sim(𝑞, 𝑞 𝑗 ) = BERT(𝑞, 𝑞 𝑗 ) (5)

As mentioned, the computation of the similarity between query
and pseudo-query is relatively cheaper as it avoids the direct uses
of BERT on the concatenated sequences of query and documents.
Interpolation with exact matching signals. As the above rele-
vance only considers the contextualized semantic matching, similar
to exiting work [26], exact matching signals from lexicon model
BM25 are further added as in Eq. 6.

r̂el(𝑞, 𝑑𝑖 ) = 𝛼 × rel(𝑞, 𝑑𝑖 ) + (1 − 𝛼) × BM25(𝑞, 𝑑𝑖 ) (6)

where 𝛼 trade-offs the weight between the semantic relevance score
and the BM25 score (normalized into [0, 1]). After getting relevance
scores r̂el(𝑞, 𝑑𝑖 ) for each 𝑑𝑖 ∈ R𝑞 , R𝑞 can be ranked accordingly.

4 EXPERIMENTS
4.1 Experiment Settings
Dataset andmetrics. MS MARCO [15] is used as the main dataset
in our experiments with both passage and document retrieval tasks.
The test queries from TREC 2019 and 2020 Deep Learning (DL)
Track [3, 4], together with the manual multi-graded judgments
according to NIST assessors, are used, allowing the calculation of
precision and recall at different pool depths. We report the official

evaluation metrics MRR, NDCG@10 and MAP at TREC DL Track.
Besides, we also report the retrieval Recall metric R@100, R@500
and R@1000 to examine the quality of candidate set. Statistical
significance for paired two-tailed t-test is reported.
Models in comparisons. We compare our method against the
following traditional and neural baselines: BM25 [21] is a classi-
cal unsupervised probabilistic ranking model based on exact term
matching. On top of that, BM25+RM3 applies query expansion
based on the relevance language model [13]. DeepCT [5] replaces
the term frequency in BM25 using BERT-based prediction dur-
ing offline indexing. doc2query [19] and docTTTTTquery [18]
expand documents with queries generated by a seq2seq model,
and rely on BM25 for retrieval over expanded documents. We use
Anserini’s [24] implementations of all above models (including the
BM25 used in our method) with default parameter settings.
Implementation details. The pseudo-query to document rele-
vance and query to pseudo-query similarity are both generated
using a BERT-Base model, whose checkpoint is fine-tuned on MS
MARCO Passage dataset and released in [14]. The maximum se-
quence length of (pseudo-)query and document are 64 and 448,
respectively. In the offline system, for each document, the first
five predicted pseudo-queries (𝑚 = 5) from docTTTTTquery [18]
are used. Each pseudo-query recalls top-1,000 documents using
BM25, before further selecting 1,000 documents as the neighbour
documents (𝑛 = 1, 000). In the online system, given a query, we
experiment with 30 and 50 seed documents using BM25 (namely, 𝑠
= 30 and 50). As for the interpolation in Eq. 6, 𝛼 is set to 0.9, and𝑑𝑖 in
BM25 is expanded using 40 and 10 pseudo-queries for passage and
document ranking tasks, respectively. For document ranking task,
we segment each document using a sliding window of ten sentences
and stride of five sentences as in docTTTTTquery with per-passage
expansion [18]. For the ColBERT (over BERT-Base) re-ranker, all
training and inference settings follow the ones in [12].
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Table 3: Results of passage retrieval after being re-ranked
(rr.) by BERT-Base or ColBERT over top-20/1000 passages. 𝑠
is the number of seed documents. NDCG@10 is reported.

Method TREC 2019 DL Track TREC 2020 DL Track

BM25 rr. BERT-Base 0.6235 / 0.6945 0.5814 / 0.6677
BM25 rr. ColBERT 0.6276 / 0.7164 0.5943 / 0.6913
BM25+RM3 rr. BERT-Base 0.6014 / 0.6963 0.5664 / 0.6608
BM25+RM3 rr. ColBERT 0.5998 / 0.7281 0.5900 / 0.6814
DeepCT rr. BERT-Base 0.6348 / 0.6929 0.5855 / 0.6883
DeepCT rr. ColBERT 0.6534 / 0.7128 0.5970 / 0.7050
doc2query rr. BERT-Base 0.6478 / 0.6949 0.6049 / 0.6793
doc2query rr. ColBERT 0.6501 / 0.7233 0.6205 / 0.6920
docTTTTTquery rr. BERT-Base 0.7269 / 0.7100 0.6820 / 0.6784
docTTTTTquery rr. ColBERT 0.7399 / 0.7328 0.6931 / 0.6935

Ours (𝑠 = 30) rr. BERT-Base 0.7237 / 0.6990 0.6808 / 0.6749
Ours (𝑠 = 30) rr. ColBERT 0.7454 / 0.7244 0.7086 / 0.6842
Ours (𝑠 = 50) rr. BERT-Base 0.7271 / 0.7043 0.6860 / 0.6791
Ours (𝑠 = 50) rr. ColBERT 0.7556 / 0.7340 0.7129 / 0.6916

Table 4: Efficiency of passage retrieval. The 43 queries in
TREC 2019 DL Track are used. Each method retrieves top-
1000 passages per query. 𝑠 is the number of seed documents.

Method CPU (ms/query) GPU (ms/query) Latency (ms/query)

BM25 93 - 93
BM25+RM3 186 - 186
DeepCT - - 93 (est.)
doc2query 116 - 116
docTTTTTquery 139 - 139
ColBERT - - 687 (est.)

BERT-Base (re-rank) - 11777 11777

Ours (𝑠 = 30) 120 363 483
Ours (𝑠 = 50) 174 605 779

4.2 Results
Our method returns significantly better candidate ranking.
For passage ranking task, as shown in Table 1, our method signif-
icantly outperforms the best baseline, namely, docTTTTTquery,
in both tracks in terms of NDCG@10 and MAP. Meanwhile, our
method also outperforms all baselines in terms of MRR and Recall.
For document ranking task, as shown in Table 2, our method per-
forms significantly better than all baselines in terms of MAP and
Recall. Our method significantly outperforms all baselines at TREC
2019 DL Track in terms of NDCG@10, and performs better than all
baselines at both DL tracks in terms of MRR.
Only a small number of candidates need to be re-ranked us-
ing ourmethod. In Table 3, the passage re-ranking results in early
precision measured by NDCG@10 are reported. When top-20 pas-
sages are re-ranked, the candidates retrieved by our method and
then re-ranked by ColBERT can get best NDCG@10 at both DL
tracks, and even outperform all other baselines that re-rank top-
1000 passages. This observation is encouraging as only a small set
of candidates are needed for achieving competitive performance
with improved online efficiency using our method.

4.3 Analysis
Online efficiency on MS MARCO. The efficiency of different
models is summarized in Table 4. The latency excludes the time of
data pre-processing and reading indexes or other data into memory.
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Figure 1: Influence of the number of seed document on pas-
sage ranking task at TREC DL Track.

For the latency of BM25(+RM3), doc2query and docTTTTTquery,
the Anserini’s implementations are used. Besides, DeepCT’s latency
is estimated as in [12] and ColBERT’s latency is estimated propor-
tionally to BM25’s latency (both are denoted by est.). The latency
of BERT-Base (re-rank 1,000 candidates) is significantly higher. In
our method, when 30 seed documents are used, a query only needs
to match 30×5=150 pseudo-queries, wherein the latency is lower
than ColBERT. Figure 1 shows the influence of the number of seed
documents. Our method performs best when 𝑠 = 50, and the latency
is lower than or close to ColBERT if 𝑠 is between 10 and 50. Note
that while full ranking with ColBERT can hopefully achieve better
effectiveness, its latency linearly grows with the collection size.
The offline computing cost. For MS MARCO Passage dataset
(about 8.8 M passages), it takes about 6,631 days to complete the
offline relevance weighting for pseudo-query to neighbour passage
pairs (5,000 pairs/passage) by BERT-Base on one Titan RTX 24G
GPU with sequence length of 512. But, this can be drastically speed
up by reducing sequence length, parallel computing and using TPUs
(a single TPU v3 is 20-30× faster from our experience). For example,
it would take less than 1 day to finish the offline computation by
using 100 TPUs v3 with sequence length of 256.
The space footprint. In our method, a document has five pseudo-
queries (1 byte/letter, about 34 letters/pseudo-query) and𝑚 × 𝑛 =

5, 000 relevance scores (4 bytes/score), adding up to 20, 170 (1×)
bytes. Assuming a document on average includes 200 tokens and
is represented using 128-dimensional vectors (4 bytes/dimension),
ColBERT requires 102, 400 (5×) bytes for one document. Thus, the
space footprint of our method is about 0.2× of ColBERT.

5 CONCLUSIONS
In this paper, we propose a neural retrieval framework based on
contextualized offline document recall, wherein the neighbour doc-
uments of selected seed documents are quickly re-ranked using
pre-computed relevance and pseudo-queries. Experiments at TREC
2019 and 2020 DL Track demonstrate that our method achieves
not only superior effectiveness and recall rates, but also lowers
online latency and disk storage cost. For the future work, we plan
to further investigate how to accelerate the offline computation.
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