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ABSTRACT

Preference judgments have been demonstrated to yield more ac-
curate labels than graded judgments and also forego the need to
de�ne grades upfront. �ese bene�ts, however, come at the cost of
a larger number of judgments that is required. Prior research, by
exploiting the transitivity of preferences, successfully reduced the
overall number of preference judgments required to O (Nd logNd )
for Nd documents, which is still prohibitive in practice. In this
work, we reduce the overall number of preference judgments re-
quired by allowing for ties and exploiting that ties naturally cluster
documents. Our novel judgment mechanism Merge-Tie-Judge ex-
ploits this “clustering e�ect” by automatically inferring preferences
between documents from di�erent clusters. Experiments on rele-
vance judgments from the TrecWeb Track show that the proposed
mechanism requires fewer judgments.
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1 INTRODUCTION

O�ine evaluation in information retrieval aims at evaluating rank-
ings of documents from rivaling systems based on a set of test
queries. �ere exist two approaches to collect judgments, namely,
graded judgments, where documents are labeled independently
with a prede�ned grade, and preference judgments, where judges
provide a relative ranking for a pair of documents. Preference judg-
ments have been demonstrated to be a more robust mechanism
than graded judgments [3, 6, 8]. Despite their advantages, they
have seen li�le adoption in practice, and graded judgments remain
prevalent. One reason for this is the inherently larger number of
judgments required, given that preference judgments need to con-
sider all pairs of documents. By assuming transitivity, this number
is reduced to O (Nd logNd ) [1, 3, 9] for Nd documents, which is
still impractical [7] for large Nd . More recently, we [4] demon-
strated that the introduction of ties can dramatically reduce the
number of judgments, when assuming transitivity. �at is, when
ties are included, di�erent orders of judgments can lead to di�erent
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numbers of judgments. Intuitively, ties cluster documents into a
smaller number of tie partitions, where a single tie partition con-
tains documents that are mutually tied. Ideally, one would desire to
simultaneously merge the tied documents into several tie partitions,
and to judge the preferences among these tie partitions instead of
among documents. In this way, the number of judgments can be
reduced from O (Nd logNd ) to O (Nt logNt + Nd ), where Nt is
the number of tie partitions [4].

Inspired by this, we propose a novel labeling mechanism, coined
Merge-Tie-Judge, to take advantage of the “clustering e�ect” of
ties by dynamically merging documents into tie partitions in the
judgment procedure. Akin to Song et al. [10], we assume that
transitivity strictly holds, so that preferences can be inferred based
on transitivity without incurring con�icts.

Contribution. A novel judgment mechanism is proposed to
speci�cally consume preference judgments with ties, which is more
robust than the existing method, and can further reduce the number
of judgments required.

2 RELATEDWORK

In early work, Rorvig [9] proposed that preference judgments could
be used beyond the scaling-based judgments due to the applicability
of simple scalability on documents. Since then, the advantages of
preference judgments over graded judgments have been empirically
tested and con�rmed [3, 5, 8, 10]. However, the quadratic nature of
the number of judgments required is overwhelming in practice [2].
�erefore, one important topic regarding preference judgments is
to reduce the number of judgments. Assuming transitivity among
preference judgments, the complexity is reduced from O (N 2

d ) to
O (Nd logNd ) [1, 3, 10], by avoiding a full comparison among all
document pairs. More recently, we [4] demonstrated that the in-
troduction of ties can further dramatically reduce the number of
judgments, when assuming transitivity. �ey analytically derived
and empirically simulated the number of judgments required in
preference judgments. �ey also argued that it is possible to further
reduce the number of judgments by merging documents that are
judged as ties simultaneously. Ideally, the number of judgments can
be reduced from O (Nd logNd ) to O (Nt logNt +Nd ), where Nt is
the number of tie partitions. Inspired by the theoretical analyses [4],
we further proposeMerge-Tie-Judge which implements this “cluster
e�ects” in this work.

3 METHOD

3.1 Mechanism Framework

In the Merge-Tie-Judge mechanism, the “cluster e�ect” is leveraged
explicitly. Intuitively, a cluster of documents grows via incoming
tie judgments, by either adding a tied document to it or by merging
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it with other clusters. �e follow-up judgments are made based on
these merged clusters, the number of which keeps decreasing as
more and more tie judgments are made.

Input All documents D, document pairs E, initialization of
tie probabilities Pt , hyper parameter JudNumber4SVM.

Output Sorted clusters of tied documents: Jud = {judi j =
ci � c j or ci ≺ c j |ci ,c j ∈ C}, where c . = {di |di ∈
D that are tied }.

/* C�c and C≺c: sets of clusters that are better

or worse than c, initialized as empty. */
Initialization Clusters C = {ci = {di }|di ∈ D},
TranTracker = {(ci ,C≺c ,C�c ) |ci ∈ C};

StopCondition ∀ ci , c j ∈ C, ci ≺ c j or ci � c j ∈ Jud

while not StopCondition do

/* Select two clusters for judgment. */

if |Jud | < JudNumber4SVM then

ci ,c j ,P
t = ActiveSVM (C,Jud );

else

ci ,c j = SelectClusterPair4Judgment (C,Pt );
end

judi j = ManualJudgment (ci ,c j );

if judi j is ci ∼ c j then
/* Merge ci, c j into new cluster cn, and

update C. */
C, cn=MergeClusters(ci , c j , C)

end

/* Update Jud, adding incoming and inferred

judgments. */
Jud=UpdateTranTracker(TranTracker , Jud , judi j )

/* Update Pt for document pairs that are

judged, 0 for non-tie and 1 for tie. */

Pt=UpdateTieProbability(Pt , Jud)
end

Algorithm 1: Merge-Tie-Judge

�e basic data structure here is the cluster of tied documents,
which is initialized with a single document. When collecting judg-
ments, two clusters are merged when at least one document pair
from either side is judged as a tie; meanwhile the transitivity re-
lationship for an individual cluster c is tracked with TranTracker,
recording clusters that are judged be�er than (C�c ) or worse than
it (C≺c ). When a document pair is judged as a non-tie (≺ or �),
the transitivity property is applied over all clusters involved, and
the TranTracker is updated accordingly. For example, if a new
judgment indicates ci � c j , then we need to update TranTracker
for ci and c j , as well as for clusters that are be�er than ci , i.e.,
c ∈ C�ci , and that are worse than c j , i.e., c ∈ C≺c j , adding
judi j = ci � c j as well as the inferred pairwise judgments to
Jud , namely, {judkl = ck � cl |ck ∈ C�ci ,cl ∈ C≺c j }.

Another important data structure is Pt , which tracks an esti-
mate of the probability of being tied for every pair of clusters, and

Pti j = P (ci ∼ c j ). During iterations, the next cluster pair to judge
is selected according to Pt : the cluster pair with the largest tie
probability is chosen for judgment. It could be initialized randomly
or based on prior knowledge, which is introduced in next section.
A�er initialization, we keep updating Pt to re�ect new judgments,
and to compute tie probabilities among emerging clusters. In Up-
dateTieProbability, the tie probability between two emerging clus-
ters is computed as the sum of the tie probability between old
cluster pairs residing in either side. �is aggregation represents the
union of the involved document pairs are tied. �us, the larger the
clusters, the more likely they are picked out for judgment.

3.2 ActiveSVM for Tie Inference

As mentioned, the tie probability Pt introduced above can be
initialized randomly. We argue that manual judgment procedure
is special in the sense that it is too expensive to repeat dozens
of times in practice. �ereby, the average number of judgments
could be misleading, especially when the variance is large. In other
words, though the average number of judgments is acceptable, the
judgment mechanism may still result in an extreme large num-
ber of judgments in practice. �erefore, we propose to reduce the
variance by introducing a predictor, i.e., ActiveSVM (C,Jud ) in Al-
gorithm 1. �e prediction function will be triggered when positive
JudNumber4SVM is set. �e prediction can be cast as a supervised
binary classi�cation problem, where an ActiveSVM method is em-
ployed to initialize Pt to encode the prior knowledge.

Active Support Vector Machine. �e support vector machine
(SVM) is employed to make predictions. A document pair di ,dj is
denoted as pi j , meanwhile its corresponding label is yi j = 0 or 1,
corresponding to non-tie and tie. �e classi�cation problem aims
at learning the function between the feature vector of each pair,
i.e., Φ(pi j ), and the binary label. Given that the ultimate target is to
collect labels over document pairs with fewer manual judgments,
the number of judgments for making prediction is desired to be
small. Henceforth, the ActiveSVM with Ratio Margin strategy
proposed by Tong and Koller [11] is used, which is designed to
approach the optimized hyperplane with a small number of labeled
data points. In each iteration, for each unlabeled document pair, two
new classi�ersw+ andw− are trained by hypothetically assigning
the document pair a positive (tie) or a negative judgment (non-tie)
respectively. �e next pair to label is selected according to ratio
betweenm+ andm−, by picking outmin(m+m− ,

m−
m+ ), wherem. is the

sum of margins of the classi�er de�ned as follows.

m+ =
∑

pi j ∈Support Vectors
w+Φ(pi j )

m− =
∑

pi j ∈Support Vectors
w−Φ(pi j )

4 EVALUATION

We now describe the experiments to examine the proposed Merge-
Tie-Judge mechanism by comparing it with�ick-Sort-Judge [10].
To empirically compare the number of judgments from graded
judgments and from preference judgments, we equivalently answer
a question: “to approach the same ground truth generated with the
graded judgments from Trec, how many judgments are required
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with preference judgments”. We denote this number as equivalent
judgment number (EqJn). As discussed in Section 3.2, we further
examine the robustness of the proposed mechanism.

4.1 Evaluation Setting

Our experiments are based on 2011–2014TrecWebTrack’s1 queries
and the corresponding labeled documents (qrel) for adhoc tasks, in-
cluding 200 queries and 64k graded judgments. Only the judged doc-
uments are considered in this work. �e judgments from Trec con-
tain at most six relevance levels: junk pages (Junk), non-relevance
(NRel), relevance (Rel), high relevance (HRel), key pages (Key) and
navigational pages (Nav), corresponding to six graded levels, i.e.,
-2, 0, 1, 2, 3, 4. �e concrete assignments varied from year to year,
where Junk and NRel are always merged as NRel in this work,
given the limited occurrences of Junk judgments (less than 5%). To
employ the system rankings from rivaling systems as features in
ActiveSVM, we also obtained the runs submi�ed by participants of
the Trec Web Track. �ere are 62 runs from 2011, 48 runs from
2012, 61 runs from 2013, and 42 runs from 2014.

Collecting preference judgments. Ideally, we should rejudge
the documents with preference judgments and compare them with
the original graded judgments from Trec. Given the una�ordable
number of document pairs to judge, instead, we employ the existing
graded judgments from the TrecWeb Track to create preference
judgments in a straightforward manner. In particular, the prefer-
ence judgments are created for two documents according to the
comparison of their graded judgments, namely, if the label for d1
is l1 and the label for d2 is l2, the preference between these two
documents is d1 � d2 when l1 > l2; d1 ∼ d2 when l1 = l2 and
d1 ≺ d2 otherwise. In this way, a�er collecting judgments for all
document pairs, we can simulate the same ground truth from graded
judgments. Note that, in practice, it is unlikely to create exactly
the same ground truth from judgments collected with di�erent
methods. �is se�ing is mainly for allowing comparisons between
preference and graded judgments under the same conditions, and
also for guaranteeing the same amount of ranking information is
collected by di�erent competing mechanisms.

Competingmechanisms. �enumber of judgmentswith graded
judgments is simply the total number of documents to judge, de-
noted as #Document. As a comparisons, we implement �ick-Sort-
Judge (QSJ) from Song et al. [10]. �e�ick-Sort-Judge is similar
to a randomized�ickSort method, where, during each iteration,
a document is randomly chosen as a pivot document. �erea�er,
all remaining documents are grouped into worse than (≺), be�er
than (�) or tied with (∼) per manual judgments. �e mechanism
terminates when all documents have been recursively sorted, and
the results are based on 300 repetitions.

We examine the proposed Merge-Tie-Judge (MTJ), where Ac-
tiveSVM is used to initialize Pt as described in Section 3.2. We
employ rankings from di�erent systems in Trec as features to train
ActiveSVM. In our preliminary experiments, the optimal se�ing
of JudNumber4SVM varies a lot over di�erent queries, as results
of the di�erence of the quality of system rankings (features) and
of the instinct di�culty to make prediction etc.. �erefore, we
further demonstrate that the number of judgments over one year

1h�p://trec.nist.gov/tracks.html

is robust within a range of se�ings for JudNumber4SVM ∈ [5,35].
In addition, we also include the variants of Merge-Tie-Judge when
initialized Pt randomly, namely, employing random probability
in place of ActiveSVM, and denote it as Merge-Tie-Judge-Random
(MTJR), whose results are also based on 300 repeats.

4.2 Equivalent Number of Judgments

In this section, we examine the equivalent judgment number from
di�erent competing mechanisms. �e results for Merge-Tie-Judge
and its comparison relative to �ick-Sort-Judge are summarized
in Table 1. For Merge-Tie-Judge, we report the results under the
average, best, and worst situations with di�erent JudNumber4SVM
in Table 1. We can see that the number of judgments is reduced sig-
ni�cantly by 5.9%, 6.8% and 4.7% under average, best, and worst sit-
uations respectively, in comparison with �ick-Sort-Judge. Beyond
that, the results from Merge-Tie-Judge, together with Merge-Tie-
Judge-Random and �ick-Sort-Judge are visualized in Figure 1,
where di�erent mechanisms are reported in terms of mean, mini-
mum, maximum, and the 95% con�dence interval. We can see that
there is no overlap of the 95% con�dence interval from two variants
of Merge-Tie-Judge and the one from�ick-Sort-Judge. �erefore,
we can conclude that in terms of the number of judgments, both
Merge-Tie-Judge and Merge-Tie-Judge-Random are signi�cantly bet-
ter than �ick-Sort-Judge.

4.3 Robustness

As mentioned, the robustness of the judgment mechanism is also
important. Especially, one may desire, even in the worst case, the
number of judgments from a mechanism still to be close to the
number of judgments on average. From Figure 1, �ick-Sort-Judge
fails to meet this expectation since the largest number of judgments
could be multiple times larger. We report the coe�cient of variation
(Cv) to quantify the robustness in Table 1, which equals the ratio of
the standard deviation to themean. We can see thatMerge-Tie-Judge
is much more robust among a wide range of JudNumber4SVM , and
the coe�cient of variance is only 3.2% of the one from �ick-Sort-
Judge. In addition, in Figure 1, from the distance between minimum
and maximum number of judgments, as well as from the length of
their con�dence interval, it is obvious that both Merge-Tie-Judge
are much more robust. Finally, compared with Merge-Tie-Judge-
Random,Merge-Tie-Judge enjoy a be�er robustness with ActiveSVM,
reducing the possible number of judgments into a small range.

5 DISCUSSION

�e transitivity has been examined among weak preference judg-
ments via crowdsourcing [5]. It has been demonstrated that transi-
tivity holds for only 75% document triples. However, from Table 2
therein, it can be also seen that it is among tie judgments the tran-
sitivity does not hold, namely, only 32% of document triples are
transitive. Whereas, for the remaining situations, the transitivity
still holds for more than 90% of document triples. In other words,
given d1 � d2, d2 � d3, no ma�er whether ties are allowed or not,
one can always infer that d1 � d3 with transitivity. Similarly, given
d1 � d2, d2 ∼ d3, in more than 90% situations, one can infer that
d1 � d3. However, given three document d1 ∼ d2 and d2 ∼ d3, one
can not infer that d1 ∼ d3, because they are not transitive anymore.
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Table 1: Equivalent judgment number when using �ick-Sort-Judge (QSJ ) and Merge-Tie-Judge with ActiveSVM. �e statistics reported are

based on JudNumber4SVM ∈ [5, 35]. Both absolute number of judgment (EqJn) and the relative comparison with document number (% more)

are reported for average, best (minimum number of judgments) and worst (maximum number of judgments) situations. �e number in the

bracket is the relative reduction w.r.t. mean value in QSJ. �e coe�cient of variation (Cv) is reported in the rightmost column.

Year Average EqJn % more Best EqJn % more Worst EqJn % more Cv QSJ % more Cv #Document

Wt11 23,818 (5.2%) 22.9% 23,680 (5.7%) 22.2% 23,977 (4.6%) 23.7% 0.0027 25,122 29.6% 0.159 19,381
Wt12 21,087 (6.7%) 31.3% 20,845 (7.7%) 29.8% 21,289 (5.8%) 32.6% 0.0046 22,587 40.7% 0.176 16,055
Wt13 19,557 (6.4%) 35.1% 19,365 (7.3%) 33.8% 19,887 (4.8%) 37.4% 0.0055 20,897 44.4% 0.167 14,474
Wt14 21,106 (5.5%) 46.3% 20,887 (6.5%) 44.8% 21,546 (3.5%) 49.3% 0.0083 22,331 54.8% 0.154 14,429

Summary 85,568 (5.9%) 33.0% 84,777 (6.8%) 31.8% 86,699 (4.7%) 34.8% - 90,937 41.3% - 64,339
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Figure 1: Comparison of number of judgments from di�erent

mechanisms. �e x-axis is di�erent years and y-axis represents the

equivalent judgment number. �e fewer equivalent judgment num-
ber the better. �ick-Sort-Judge is reported as a baseline;Merge-Tie-
Judge, which implements ActiveSVM, and Merge-Tie-Judge-Random
are both reported. For random mechanism, the mean, minimum,

maximum as well as the 95% con�dence interval are plotted.

As mentioned, this is due to the e�ects that it is hard to tell whether
two documents should be judged as tied or non-tied, when their
relevance are very close [5].

On the other hand, in Merge-Tie-Judge, non-ties are used to de-
termine the relative order of tie partitions or of documents, mean-
while ties are used to grow the tie partitions. Given the degraded
transitivity brought by ties, one can regard such tie partitions as
documents, among which the mutual preferences are not of interest,
and only the strict preferences among tie partitions are employed
for evaluation. Recall that we [5] demonstrated the quality from
weak preferences is signi�cantly be�er than the one from graded

judgments. �us judgment mechanisms employing ties, like Merge-
Tie-Judge and�ick-Sort-Judge [10], actually exchange 33% more
judgments relative to graded judgments (Table 1) for a be�er judg-
ment quality. Should one desire to collect strict preferences among
all documents, which has the best judgment quality, at least 800%
more judgments have to be made [4].

6 CONCLUSION

In this work, a robust judgment mechanism, named Merge-Tie-
Judge, is proposed, utilizing the “cluster e�ect” of tie judgments,
bringing down the number of judgments. For future work, in aware-
ness of the importance of ties, they are worth being carefully de-
�ned and exploited to make them more applicable. Moreover, novel
judgment mechanisms are desired, addressing the con�icts among
preference judgments by tolerating intransitive judgments.
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