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Abstract. Information retrieval evaluation heavily relies on human
effort to assess the relevance of result documents. Recent years have seen
efforts and good progress to reduce the human effort and thus lower the
cost of evaluation. Selective labeling strategies carefully choose a sub-
set of result documents to label, for instance, based on their aggregate
rank in results; strategies to mitigate incomplete labels seek to make up
for missing labels, for instance, predicting them using machine learning
methods. How different strategies interact, though, is unknown.

In this work, we study the interaction of several state-of-the-art
strategies for selective labeling and incomplete label mitigation on four
years of TREC Web Track data (2011–2014). Moreover, we propose
and evaluate MaxRep as a novel selective labeling strategy, which has
been designed so as to select effective training data for missing label
prediction.

1 Introduction

Evaluation in information retrieval often relies on the Cranfield paradigm [10].
To establish the relative performance of several information retrieval systems,
one agrees on a set of information needs (called topics), which are representative
of the target workload. Each of these information needs is then formulated as a
keyword query, and results are obtained from each of the information retrieval
systems under comparison. Following that, human assessors label retrieved result
documents with regard to their relevance. Finally, based on the collected labels,
a retrieval effectiveness measure such as mean-average precision (MAP) or nor-
malized discounted cumulative gain (nDCG) is computed to establish a relative
order of the compared information retrieval systems according to their retrieval
performance.

Manual labeling is laborious and costly, in particular when the number of
topics and/or the number of compared systems is large. As a reaction, recent
years have seen a fair amount of research that seeks to reduce the cost of informa-
tion retrieval evaluation. Selective labeling, as a first direction, chooses a subset
of returned result documents to label. Among the simplest strategies, depth-k
pooling [16,17] only collects labels for documents returned in the top-k result
of any of the compared systems. More sophisticated strategies leverage knowl-
edge about the retrieval effectiveness measure used, for instance, Carterette and
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Allan [7] who label only documents with a potential effect on the relative order
of any two systems. While cutting costs, selective labeling leads to result docu-
ments whose relevance label is not known. Such incomplete labels can also arise
for other reasons, for example, when evaluating a novel information retrieval sys-
tem that did not contribute to the original pool of result documents. Mitigating
incomplete labels, as a second direction, seeks principled ways to make up for
missing relevance assessments. The default of dealing with them is to assume that
result documents are irrelevant if they have not been labeled. While this may
appear pessimistic at first glance, it is not unreasonable given that most docu-
ments will be irrelevant to any specific information need. Alternative approaches
have come up with novel effectiveness measures [3], removed documents without
known label from consideration [15], and made use of machine learning methods
to predict missing labels [4].

Contributions. What has received some prior attention but has not been fully
explored, though, is how the different strategies for selective labeling and incom-
plete label mitigation interact with each other. As a first contribution of this
paper we thus examine the interaction of state-of-the-art selective labeling and
incomplete label mitigation strategies on four years of TREC Web Track data
(2011–2014). The performance of different combinations is studied both in terms
of approximating MAP scores (in terms of root mean square error) as well as
system rankings (in terms of Kendall’s τ). Also, strategies for selective labeling
have typically been designed with no consideration of how incomplete labels are
dealt with later on. Hence, as a second contribution, inspired by recent work
in machine learning [19] and the cluster hypothesis [14], we propose MaxRep
as a novel selective labeling strategy. MaxRep selects documents to label so
as to maximize their representativeness of the pool of result documents, thus
yielding effective training data for label prediction. MaxRep is formulated as
an optimization problem, which permits efficient approximation.

Organization. The rest of this paper is organized as follows. Section 2 recaps
existing strategies for selective labeling and incomplete label mitigation and puts
our work in context. Section 3 puts forward our novel selective labeling strategy
MaxRep. Our extensive experimental study is the subject of Section 4. Finally,
in Section 5 we draw conclusions.

2 Technical Background and Related Work

In this section, we provide the technical background for our work by reviewing
existing strategies for selective labeling and incomplete label mitigation. More-
over, we put our proposed MaxRep method in context with existing work.

2.1 Selective Labeling

Several efforts have looked into how, to reduce human effort and hence cost, only
a subset of returned documents can be labeled, while still producing a reliable
relative ranking of multiple information retrieval systems:
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Pooling strategies merge the results returned by different systems to form a
pool of result documents to be labeled by human assessors. The most common
strategy, depth-k pooling as used by TREC, considers only documents that are
returned within the top-k of any system. Cormack et al. [11], as an alterna-
tive, propose move-to-front pooling (MTF) as an iterative pooling procedure,
requiring continued human effort, which systematically prioritizes documents
returned by systems that have already returned relevant documents. Vu and
Gallinari [17] make use of machine learning for pooling. Using documents from
the top-5 pool as training data, they employ learning-to-rank methods to esti-
mate the relevance of yet-unlabeled documents. Documents more likely to be
relevant are then labeled with higher priority. Features, in their case, encode the
rank at which the document was returned by different systems. Their approach
thus requires two rounds of human interaction to label (i) documents in the top-5
pool as training data and (ii) a number of the remaining documents.

Aslam et al. [2] devise a biased sampling strategy that yields an unbiased
estimator of MAP. A more practical sampling strategy with good empirical per-
formance is described by Aslam and Pavlu [1]. The key idea here is to introduce a
sampling distribution, so that documents ranked highly by many system, which
are therefore expected to be relevant, are selected more often. The probability
of selecting the document at rank r from a result list of length n is defined as

P [r] ≈ 1
2n

log
n

r
.

These per-system probabilities are aggregated, corresponding to choosing a sys-
tem at uniform random, and documents are selected using stratified sampling.

Carterette et al. [7] propose the minimal test collection (MTC) method. For
a specific retrieval effectiveness measure (e.g., MAP or nDCG), MTC iteratively
selects discriminative documents to label until the relative order of systems has
been determined. Requiring continued human interaction at every step, like MTF
pooling described above, it is an active procedure.

Unlike all of the aforementioned strategies, which only take ranking informa-
tion into account, our novel method MaxRep also considers document contents.
Inspired by Yu et al. [19] and designed with label prediction in mind, MaxRep
aims at selecting a representative set of documents from the pool of result doc-
uments to yield effective training data.

2.2 Incomplete Label Mitigation

Labels can be incomplete for different reasons, for instance, since they were
collected only selectively or because the evaluated information retrieval system
is novel and did not contribute to the initial result pool. Different strategies have
been proposed as remedies:

As already mentioned above, a common way to deal with missing relevance
labels, which is also used in TREC, is to assume that those documents are
irrelevant. Given that most documents are irrelevant anyway for any specific
information need, this can also be interpreted as label prediction with a simple
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majority classifier. More elaborate label prediction methods will be discussed
below. Sakai [15], as an alternative, proposes to remove documents without
known labels from consideration yielding condensed result lists. Both aforemen-
tioned incomplete label mitigation strategies are agnostic to the retrieval effec-
tiveness measure used.

In contrast, Buckley and Voorhees [3] propose bpref as an alternative retrieval
effectiveness measure mimicking mean-average precision (MAP). With R as the
number of labeled relevant documents, it is defined as

bpref =
1
R

∑

r

(
1 − | labeled irrelevant above rank r |

R

)
,

and the term in parenthesis can be interpreted as an estimator of precision at
rank r. In their experiments, bpref proved robust and exhibited high rank corre-
lation with MAP. However, in terms of numerical value, bpref may deviate from
MAP if many labels are missing. Yilmaz and Aslman [18] describe two alter-
natives, based on sampling theory, that are closer to MAP. The first, induced
average precision (indAP), removes documents with unknown label from con-
sideration and can be seen as an application of the condensed list approach [15]
to MAP. The second, inferred average precision (infAP), relies on the following
improved estimator of precision at rank r

E[precision at r] =
1
r

+
(r − 1)

r

( | labeled above rank r |
r − 1

· | labeled relevant |
| labeled |

)
,

which also takes into account what fraction of documents has been labeled.
Another family of strategies uses machine learning methods to predict miss-

ing relevance labels. Carterette and Allan [6] use regularized logistic regression
to predict the relevance of documents. Building on the cluster hypothesis [14],
document features encode tf.idf -based cosine similarity with documents whose
labels are known. Büttcher et al. [4], to the same end, explore two approaches,
namely a simple classifier based on statistical language models and a support
vector machine (SVM). For the latter, document features are tf.idf -weights for
the 10 6 most common terms in the document collection. Given the good perfor-
mance of the SVM-based label prediction in their experiments, we use this as
one of the incomplete label mitigation strategies in our experiments.

3 Selecting Representative Documents to Label

We now describe MaxRep, our novel strategy for selective labeling. In contrast
to existing strategies, MaxRep not only considers ranking information but also
takes into account document contents. Intuitively, it aims at selecting a subset of
documents that is representative, in particular of those documents expected to
be relevant. MaxRep thus harvests effective training data for label prediction,
since documents are representative of the overall pool of result documents, and
it also makes up for the inherent bias against relevant documents.
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Let D denote the pool of result documents for a specific topic. Our objective
is to select a k-subset L ⊆ D that best represents the pool of result documents.
Intuitively, if two documents have similar contents, there is no need to label
both of them, since their labels tend to be identical. We let sim(di, dj) ∈ [0, 1]
denote a measure of content similarity between documents di and dj . Further,
we let rel(di) ∈ [0, 1] denote a measure of expected relevance of document di

Our concrete implementation uses the cosine similarity between tf .idf -based
document vectors as a measure of document content similarity. More precisely,
with tf (v, d) as the term frequency of term v in document d, df (v) as its docu-
ment frequency, and n as the total number of documents in the collection, the
feature weight for term v in document vector d is

d(v) = tf (v, d) log
n

df (v)
,

and we measure the similarity between documents di and dj as

sim(di, dj) =
di · dj

‖di‖ ‖dj‖
which ranges in [0, 1] given that we only have non-negative feature weights. As
in Büttcher et al. [4] our implementation only considers the 10 6 most frequent
terms from the document collection. Moreover, in order to reduce noise, we
ignore similarities below 0.8, setting them to zero, when choosing representative
documents. As a measure of expected relevance our concrete implementation
uses the probability according to the sampling distribution also used in Aslam
and Pavlu [1] and described in Section 2.

We measure the representativeness of a document set L as

f(L) =
∑

di∈D
rel(di) max

dj∈L
(sim(di, dj)) . (1)

This formulation rewards document sets that cover all documents from D that
are expected to be relevant by including at least one similar document.

Building on this, we cast selecting the set of k most representative result
documents into the following optimization problem

argmax
L

f(L) s.t. |L| = k

It turns out that the above optimization problem permits efficient approxi-
mation thanks to the submodularity of its objective function, which we state in
the following lemma.

Lemma 1 (Submodularity). Equation 1 defines a submodular function.
Given two document sets L and L′ with L ⊆ L′ and a document d ∈ D, then

f(L ∪ {d}) − f(L) ≥ f(L′ ∪ {d}) − f(L′) .
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Proof (of Lemma 1). We can rewrite for X ∈ {L,L′}

f(X ∪ {d}) − f(X ) =
∑

di∈D
rel(di) max

(
0, sim(di, d) − max

dj∈X
sim(di, dj)

)
.

Now,
L ⊆ L′ ⇒ ∀ di ∈ D : max

dj∈L
sim(di, dj) ≤ max

dj∈L′
sim(di, dj)

⇒ f(L ∪ {d}) − f(L) ≥ f(L′ ∪ {d}) − f(L′) .

��
Having established the submodularity of our objective function, we can make

use of the result by Nemhauser et al. [12] and greedily build up the set of repre-
sentative documents L. More precisely, starting from L0 = ∅, in the i-th iteration
we include the document from D\Li−1 that maximizes f(Li), and finally report
Lk as a result. This greedy algorithm gives a (1 − 1

e )-approximation [12], guar-
anteeing the performance of the proposed greedy algorithm.

4 Experimental Evaluation

In this section, we describe our experimental evaluation. We report on the per-
formance of different combinations of strategies for selective labeling, including
MaxRep as the one proposed in this work, and incomplete label mitigation.
This is done on four years’ worth of participant data from the TREC Web Track
(2011–2014), and we investigate how well combinations can approximate the sys-
tem ranking, in terms of Kendall’s τ , but also how well they can approximate
MAP scores, in terms of root mean square error (RMSE).

4.1 Datasets

Our experiments are based on the ClueWeb091 and ClueWeb122 document
collections. Queries and relevance labels are taken from the adhoc task of the
TREC Web Track (2011–2014). This leaves us with a total of 200 queries (50
per year) and their corresponding relevance labels. We also obtained the runs
submitted by participants of the TREC Web Track. There are 62 runs for 2011,
48 runs for 2012, 61 runs for 2013, and 42 runs for 2014. For each submitted run
we consider the top-20 search results returned. In 2013 a subset of 21 queries
was only labeled up to depth 10. For those queries we apply the condensed list
approach, that is, for each system we consider the 20 highest-ranked labeled
documents as its result.

1 http://www.lemurproject.org/clueweb09.php/
2 http://www.lemurproject.org/clueweb12.php/

http://www.lemurproject.org/clueweb09.php/
http://www.lemurproject.org/clueweb12.php/
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4.2 Methods

We consider the following non-active strategies for selective labeling :

– uniform random sampling, as described by Buckley and Voorhees [3], we
give the method an advantage by sampling retrospectively from relevant and
irrelevant documents (we report averages based on 30 repetitions);

– incremental pooling, as described by Carterette [5,7], we select documents
according to the best rank assigned by any system and break ties according
to the average rank across all systems;

– statAP, as described by Aslam and Pavlu [1], with additional judgments
obtained from pooling (we report averages based on 30 repetitions);

– our method MaxRep as described in Section 3.

To mitigate incomplete labels, we consider the following strategies:

– trec-map treats documents with unknown label as irrelevant;
– bpref [3] separates the labeled non-relevant documents from unlabeled doc-

uments;
– indAP [18] regards missing labels as non-existing
– infAP [18] relies on an improved estimator of precision at rank r
– statAP [1] computes AP with adjustments by inclusion probability from

the document sampling phase
– predict-map, SVM-based label prediction approach [4], which we imple-

mented using the scikit-learn [13] toolkit.

This gives us a total of 21 combinations to investigate. Given that statAP
as a strategy for mitigating incomplete labels requiring inclusion probabilities
as an input from selective labeling, we only compute statAP when labels have
been selected with statAP itself.

4.3 Approximation of System Ranking and MAP Scores

Our first experiment studies how well different strategies can approximate the
system ranking in terms of Kendall’s τ and how well they can approximate the
MAP scores of individual systems. To this end, we select a varying percentage,
from 1% up to 95%, to label using the different strategies. Figure 1 shows the
Kendall’s τ value obtained for different selective labeling strategies on each of the
four years (2011–2014) considered. Comparing the different incomplete label mit-
igation strategies, we observe that predict-map, the SVM-based label prediction
approach, consistently achieves good performance, regardless of how documents
to label are selected. In most plots, with as little as 20% of labeled documents,
predict-map thus achieves a Kendall’s τ value above 0.9, which indicates that
the obtained system ranking is practically indistinguishable from the ground
truth. Using trec-map and assuming that documents without known labels are
irrelevant, totally mixing the labeled non-relevant and unlabeled documents, at
the other extreme, performs worst in most plots. Not surprisingly, this is most
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pronounced when using our selective labeling strategy MaxRep. Figure 2 plots
the corresponding root mean square error (RMSE), measuring how well the dif-
ferent combinations approximate MAP scores of individual systems. Predicting
missing labels using predict-map again achieves the best result by yielding lowest
approximation errors. The highest approximation errors are almost consistently
seen for bpref, which is not surprising given that, as described in Section 2, it is
different from MAP.

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 11  12  13  14

P
er

ce
nt

ag
e 

of
 L

ab
el

s 
R

eq
ui

re
d 

to
 R

ea
ch

 0
.9

 C
or

re
la

tio
n 

Year 

Kendall’s τ Correlation Threshold: 0.9

Uniform Random Sampling  
statAP  

Incremental Pooling  
MaxRep  

Fig. 3. Percentage of labeled documents required to achieve a Kendall’s τ correlation
above 0.9 when using label prediction.

4.4 Selective Labeling under Label Prediction

Given the good performance of label prediction in the previous experiment,
we now investigate which selective labeling strategy performs best with it. To
this end, in Figure 3, we plot the percentages of documents that need to be
labeled, with different selective labeling strategies, when using predict-map for
label prediction to achieve a Kendall’s τ score above 0.9.

As can be seen, our selective labeling strategy MaxRep performs best across
all four years under consideration. It thus consistently requires the lowest per-
centage of documents to be labeled to achieve a system ranking that is practically
indistinguishable from the ground truth. Its relative advantage is clearest for the
years 2011 and 2012 for which MaxRep requires as little as 30− 35% of labeled
documents. Also in this experiment, uniform random sampling performs worst,
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typically requiring more than 60% of labeled documents to achieve a Kendall’s
τ value above the threshold. Additionally, we conduct paired two-tailed t-test
between different baselines w.r.t. our method for these least percentage of labels
required to get over 0.9 correlation, and our method outperform the uniform
random sampling and incremental pooling at 95% significant level (p-value=.008
and .032), meanwhile outperform the statAP at 90% level (p-value=.063).

As for comparison on RMSE, from Figure 2, we can see that our method is
comparable to other methods in terms of approximating MAP scores. However,
no clear winner is observed among different selective labeling methods when
combined with mitigation through label prediction.

5 Conclusion

Low-cost evaluation has been an active area of research within information
retrieval for the past decade. In this work, we have investigated how differ-
ent strategies for selective labeling and mitigating incomplete labels interact. To
this end, we conducted a large-scale experimental evaluation on ClueWeb09/12
with participant data from the adhoc task of TREC Web Track 2011–2014. We
found that label prediction is a robust and viable strategy to mitigate incomplete
labels, as long as at least 20% of documents have been labeled as training data.
Moreover, with label prediction in mind, we proposed a novel strategy MaxRep
for selective labeling. In contrast to existing strategies, it considers both ranking
information and document contents and seeks to select a representative subset
of documents to label. Our experiments confirmed that MaxRep is beneficial
and outperforms other strategies when label prediction is used.

As part of our ongoing research, we investigate how strategies for selective
labeling and incomplete label mitigation can be adapted for retrieval effectiveness
measures such as α-nDCG [9] and ERR-IA [8] that capture novelty & diversity.
Moreover, we study the reusability of this semi-automatically generated labeled
collection, examining the reliability in evaluating systems without contributing
to the initial document collection.
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