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ABSTRACT
With the rapid development of the information technology,
there exists the difficulty in deploying state-of-the-art re-
trieval models in environments such as peer-to-peer networks
and pervasive computing, where it is expensive or even in-
feasible to maintain the global statistics. To this end, this
paper presents an investigation in the validity of different
statistical assumptions of term distributions. Based on the
findings in this investigation, a variety of weighting mod-
els, called NG (standing for “no global statistics”) models,
are derived from the Divergence from Randomness frame-
work, in which only the within-document statistics are used
in the relevance weighting. Compared to the state-of-the-art
weighting models in extensive experiments on various stan-
dard TREC test collections, our proposed NG models can
provide acceptable retrieval performance in ad-hoc search,
without the use of global statistics.
Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval
General Terms: Experimentation, Performance, Algorithms

Keywords
Probabilistic models, Term frequency distribution fitting,
Within-document statistics

1. INTRODUCTION
The probabilistic models are among the most popular in-

formation retrieval models for their efficiency and effective-
ness. The BM25 probabilistic weighting function [9], the
PL2 Divergence from Randomness (DFR) model [1] and
the KL-divergence language model (KLLM) [13], have been
shown effective in TREC experimentation1. All of these

1Although these three weighting models are based on differ-
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three models consider the global term statistics, e.g. the
document frequency and the collection-wide term frequency,
for the relevance weighting. The use of global statistics in
the weighting models can be beneficial to the retrieval ef-
fectiveness. However, in large-scale Web applications such
as the distribution IR, peer-to-peer network and pervasive
computing, it is difficult or even infeasible to maintain the
global statistics [2, 11]. To this end, the aim of this paper
is to explore the possibility of developing the fairly simple
retrieval models that use only within-document statistics for
the relevance weighting.

The main contribution of this paper is tri-fold. First, we
study the term frequency distribution on various recent IR
datasets, results show that other than the classical Poisson
assumption proposed by Harter in 1975 [4], there are quite a
few appropriate approximations of the actual term frequency
distribution in recent datasets. Second, we propose a family
of NG (No Global statistics) weighting models that use only
the within-document statistics for the relevance weighting.
Evaluation shows that the weighting models based on the
Weibull approximation of the term frequency distribution
demonstrates the best retrieval performance and robustness.
Third, we develop a new weighting framework that is a sim-
plified form of the DFR framework which can improve not
only the retrieval performance, but also the robustness by
reducing the parameter sensitivity.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the related work. Section 3 applies a list
of distribution functions to fit the actual term frequencies
in standard TREC collections. A list of new NG weighting
models using only the within-document statistics for rele-
vance weighting are proposed in Section 4. Evaluation re-
sults of these new models are then presented in Section 5.
Finally, Section 6 concludes the work and suggests possible
future research directions.

2. RELATED WORK
A well-known empirical description of the term frequency

distribution in text collection is the so-called Zipf’s law, in
which a given term’s collection-wide frequency is inversely
proportional to its rank in the frequency table [15]. Luhn’s

ent assumptions of relevance, they are usually considered to
be within the category of probabilistic models [7].
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work in 1957 is among the earliest research on the term fre-
quency distribution and IR. His research gave an outline for
building a system based on statistical method for literature
searching by machine [5]. Later in 1975, Harter proposed
the 2-Poisson assumption for keyword indexing, in which
the informative terms in the documents, namely specialty
words, follow Poisson distribution in both the entire docu-
ment collection, and the elite set [4].

The 2-Poisson assumption has been widely recognized as
the standard approximation of the term frequency distribu-
tion. The BM25 and PL2 DFR models, both derived based
on the 2-Poisson assumption, are currently among the most
popular and effective IR models. The formulas of these two
models, as well as the KLLM model, are introduced below.
These three popular probabilistic models are used as the
baselines in our evaluation.

As one of the most established weighting models, BM25
computes the relevance score of a document d for a query Q
by the following formula [9]:

score(d,Q) =
∑
t∈Q

w(1) (k1 + 1)tf

K + tf

(k3 + 1)qtf

k3 + qtf
(1)

where qtf is the query term frequency; w(1) is the idf factor,
which is given by:

w(1) = log2
N −Nt + 0.5

Nt + 0.5

N is the number of documents in the whole collection.
Nt is the document frequency of term t. K is given by
k1((1 − b) + b l

avg l
), where l and avg l are the document

length and the average document length in the collection,
respectively. The document length refers to the number of
tokens in a document. k1, k3 and b are parameters. The
default setting is k1 = 1.2, k3 = 1000 and b = 0.75 [9]. qtf
is the number of occurrences of a given term in the query;
tf is the within document frequency of the given term.

Let tfn = tf

(1−b)+b· l
avg l

, where tfn denotes the normalized

term frequency, we obtain:

score(d,Q) =
∑
t∈Q

w(1) k1(k1 + 1)tfn

k1tfn+ 1

(k3 + 1)qtf

k3 + qtf

Hence the term frequency normalization component of the
BM25 formula can be seen as:

tfn =
tf

(1− b) + b · l
avg l

(2)

The Kullback-Leibler divergence language model (KLLM)
with Dirichlet smoothing assigns the relevance score as fol-
lows [13, 14]:

score(d,Q) =
∑
t∈Q

p(t|θ̂Q)log2(1+ tf

μP (t|C) )+ log2
μ

μ+ l
(3)

where p(t|θ̂Q) is the maximum likelihood of generating query
term t from a query model. p(t|C) is the generation proba-
bility from the collection model. In this paper, the free pa-
rameter μ is set by simulated annealing on training queries.

PL2 is one of the weighting models derived from the Di-
vergence from Randomness (DFR) framework. The DFR

framework assigns the relevance score of a document d for a
query Q as follows [1]:

score(d,Q) =
∑
t∈Q

qtf · Inf1 · Inf2 (4)

where qtf is the query term frequency. The first measure-
ment of the information amount Inf1 is given by the infor-
mation content −log2P (t, tf |d). P (t, tf |d) is the probabil-
ity of having tf occurrences of query term t in document d.
The second measurement of the information amount Inf2
is given by Laplace succession 1

tfn+1
. The normalized term

frequency tfn is given by Normalization 2:

tfn = tf · log2(1 + c · avg l

l
), (c > 0) (5)

where the recommended setting of free parameter c ranges
from 1 to 7, depending on the search task.

Assuming the Poisson distribution of the term frequency
in the collection leads to the PL2 model, where the relevance
score of a document d for a query Q is given by [1]:

score(d,Q) =
∑
t∈Q

qtf · 1

tfn+ 1

(
tfn · log2

tfn

λ

+(λ+
1

12 · tfn − tfn) · log2 e+
0.5 · log2(2π · tfn)) (6)

where λ is the mean and variance of the assumed Poisson
distribution. Estimation of λ requires the global statistics
of the term’s distribution in the whole document collection.

In this paper, we propose to eliminate the need for global
statistics in the DFR models by treating the P (t, tf |d) as
a function of the within-document term frequency tf, and
its parameters of the term frequency distribution function.
Various distribution functions are tested in our study on the
distribution fitting in the following sections. In addition, as
explained in Section 4.2, the average document length avg l
is obtained by averaging the document length of random
samples from the collection.

3. FITTING THE TERM FREQUENCY DIS-
TRIBUTION

Harter’s [4] study on the term frequency distribution was
based on the analysis on a sample of the archives at the
Graduate Library of University of Chicago. With the fast
growth of the internet in both size and the amount of in-
formation in text documents or Web pages, an interesting
research question arises: do the terms still follow the Poisson
distribution in recent datasets?

In this section, we attempt to answer the above research
question by using a list of statistical distribution functions
(Section 3.1) to fit the term frequency distribution in stan-
dard TREC collections, as described in Section 3.2. Detailed
analysis on the distribution fitting is provided in Section 3.3.

3.1 Distribution Functions
We study a variety of distribution functions as follows:

• Poisson distribution:

P (t, tf |d) = e−λλtf

tf !
(tf = 0, 1, 2, · · · ) (7)
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Figure 1: The empirical probabilities (X-axis) against the estimated probabilities (Y-axis) of the distribution
fitting.

where λ is a positive real number, which is the ex-
pected number of occurrences.

• Gamma distribution:

P (t, tf |d) = λα

Γ(α)
xα−1e−λx(tf ≥ 0) (8)

where α > 0 is the shape parameter and λ > 0 is the
scale parameter.

• Exponential distribution:

P (t, tf |d) = λe−λtf , (tf ≥ 0) (9)

where λ > 0 is called the rate parameter of the distri-
bution. The distribution is supported on the interval
[0,∞).

• Weibull distribution:

P (t, tf |d) = k

λ

(
tf

λ

)k−1

e−(
tf
λ

)k (tf ≥ 0) (10)

where k > 0 is the shape parameter and λ > 0 is the
scale parameter of the distribution.

• Rayleigh distribution:

P (t, tf |d) = tf

σ2
e
− tf2

2σ2 (tf ≥ 0) (11)

where σ > 0 is the parameter of this distribution.

• χ2 distribution:

P (t, tf |d) = ( 1
2
)
n
2

Γ(n
2
)
tf

n
2
−1e−

tf
2 (tf ≥ 0) (12)

where n = 1, 2, 3 · · · is the degrees of freedom.

3.2 Datasets and the Fitting Method
We use four standard TREC test collections in our study:

disk1&2, disk4&5, WT10G and .GOV2. For all four test
collections used, each term is stemmed using Porter’s En-
glish stemmer, and standard English stopwords are removed.
Only the query terms in the title field are used.

Weighted Least Squares (WLS) regression is used to deter-
mine the optimal parameters in a given distribution function
by fitting the target function, namely the empirical cumu-
lative distribution function (ECDF). The use of the CDF
function instead of the probability density function (PDF)

Table 1: Information about the test collections used.
Coll. TREC Task Topics # Docs
disk1&2 1, 2, 3 ad-hoc 51-200 741,856
disk4&5 Robust 2004 301-450, 601-700 528,155
WT10G 9, 10 Web 451-550 1,692,096
GOV2 2004-2006 Terabyte Ad-hoc 701-850 25,178,548

as the target of the distribution fitting is a common practise
because CDF can uniquely determine a distribution, while
PDF may not, for example when the PDF of a given dis-
tribution cannot be derived, or simply does not exists. The
mean sum of square error (SE) between the estimated dis-
tribution and the observed distribution of all query terms in
the title field is used to indicate the goodness of the fitting.

3.3 Results of the Distribution Fitting
In Harter’s work, the distribution fitting is done on the

raw term frequencies [4]. We base our investigation on the
distribution of the normalized term frequency (tfn) instead.
For space reason, we only report the results obtained using
BM25’s default setting b = 0.75.

Figure 1 plots the P-P figures between the fitted proba-
bilities and the empirical probabilities on the four datasets
used. The average linear correlation coefficients between
ECDF and CDF of the Poisson, χ2, Exponential, Gamma,
Rayleigh, Weibull distribution are 0.9908, 0.9735, 0.9743,
0.9904, 0.9874, and 0.9832 respectively. It shows that all
the six distributions can fit the term frequency distribution
to some extent on the four test collections being used.

Finally, we conduct ANOVA to investigate the differences
of the fitness among the distributions being used. In Fig-
ure 2), objects on the left have better fitting goodness than
its right ones. Vertical dashed lines separating the objects
shows the significant fitness differences in the group. Ac-
cording to Figure 2, Gamma andWeibull distributions demon-
strate better fitness than the others.

4. PROPOSED NG MODELS
We describe our proposed NG models (no global statistics

models) in Section 4.1, and estimate the average document
length, which is a global variable, in Section 4.2.

4.1 Formulas
Our proposed NG models follow the DFR framework as

introduced in Equation (4). Under the general probabil-
ity platform of DFR framework, we can generate new NG
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Figure 2: The ANOVA test for the significance of difference in fitting goodness of different distribution
functions on the four datasets used.

weighting models by replacing the probability P (t, tf |d) with
the proper function form which can fit the real normalized
term frequency distribution well.

Table 7 explains how the proposed NG models are gen-
erated named. For example, the WL2d model assigns rele-
vance score as follows:

score(d,Q) =
∑
t∈Q

qtf · Inf1 · Inf2 (13)

=
∑
t∈Q

qtf · (−log2P (t, tf |d)) · Inf2

=
∑
t∈Q

qtf · (−log2
k

λ

(
tfn

λ

)k−1

e−( tfn
λ

)k )

· 1

1 + tfn

where the probability P (tf, t|d) is estimated by Weibull (W)
distribution in Equation (10), Inf2 is given by Laplace suc-
cession (L) as explained in Table 7. The normalized term
frequency tfn is given by Normalization 2 in Equation (5). A
d at the end of the model name stands for within-document
term statistics, indicating that the model is derived from
the DFR framework in Equation (4). The distribution pa-
rameters λ and k are treated as free parameters that require
tuning on training queries.

A notable difference between our proposed NG models
and the state-of-the-art probabilistic models is that the for-
mer does not involve the use of the global statistics. How-
ever, we need to apply term frequency normalization, such as
the normalization 2 in Equation (5) and BM25’s normaliza-
tion method in Equation (2), to cope with the bias towards
long documents. Both of the above mentioned normaliza-
tion methods use an expected document length, given by
the average document length in the entire document collec-
tion, as a normalization factor. In this paper, we propose a
method to get the average documents length by estimating
through random sampling in the collection and our stimu-
lating experiments have shown good estimating results.

4.2 Estimating the Expected Document Length
We use Systematic Sampling to estimate the average doc-

ument length in the tf normalization part. A unique feature
of Systematic Sampling is that it can give a stable estimate
of the random variable, i.e. the average document length

Table 2: The estimated (EstL) and the actual aver-
age document length (avg l) on the four test collec-
tions used, and the error in percentage.

Coll. EstL avg l Error (%)
disk1&2 266.10 261.30 1.84
disk4&5 301.22 297.10 1.39
WT10G 406.68 399.28 1.85
GOV2 673.76 648.42 3.91

Table 3: The average error rate (Avg.), maximum
positive error rate (MaxPos), minimum negative er-
ror rate (MinNeg) of the 10,000 estimated average
document length. Avg. is the mean of the absolute
values of MaxPos and MinNeg.

Coll. Avg. (%) MaxPos (%) MinNeg (%) CV
disk1&2 3.15 3.55 -9.23 0.8348
disk4&5 2.72 2.98 -6.8 0.7021
WT10G 3.07 3.90 -8.38 0.8306
GOV2 3.89 0.53 -8.37 0.4470

(avg l) in our case, with only few samples from the dataset,
which is therefore very suitable for our study.

Our stimulated tests of the estimates of the average docu-
ment length on four datasets show that most of the sampled
average document length EstL fall around the actual aver-
age document length, showing the reliability of the sampling
method. Some detailed statistics of the tests are shown in
Table 3. The table shows that a descent approximation re-
sult is observed in the 10,000 times of systematic sampling
experiments. When sampling 2.5% of the collection’s docu-
ment length, the average error rate is less than 4%, and the
maximum error rate is less than 10%.

5. RETRIEVAL EVALUATION
Section 5.1 introduces the evaluation settings and Section

5.2 presents the experimental results.

5.1 Evaluation Settings
Our proposed NGmodels are evaluated against the KLLM,

BM25, and PL2 weighting models, which are among the
most effective weighting models as shown by the evaluation
results in the literature such as the TREC experimentation
[12]. The experiments are conducted using an in-house ver-
sion of the Terrier toolkit [8].

We again use the same TREC collections and their associ-
ated title-only queries as in Section 3.2. On each collection,
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Figure 3: The parameter value of the distribution functions (X-axis) against the MAP obtained (Y-axis)
using the NG models (dashed lines) and its simplified forms (solid lines).

we evaluate the NG models by a two-fold cross-validation.
The test topics associated to each collection are split into
two equal-size subsets by parity. We use one subset of top-
ics for training, and use the remaining subset for testing.
The overall retrieval performance is averaged over the two
test subsets of topics. We use the TREC official evalua-
tion measures in our experiments, namely the Mean Aver-
age Precision (MAP) [12]. All statistical tests are based on
Wilcoxon matched-pairs signed-rank test at the 0.05 level.

Table 4: Experimental results of the baselines.
Coll. KLLM PL2 BM25
disk1&2 .2351 .2336 .2404
disk4&5 .2565 .2570 .2535
WT10G .2153 .2126 .2080
GOV2 .3028 .3042 .2997

5.2 Evaluation Results
The evaluation results of the NG models are presented in

this section. Tables 4 and 5 contain the evaluation results
of the three state-of-the-art probabilistic models and our
proposed NG models, respectively. According the results,
we have the observations as follows:

First, the NG models based on Weibull and Poisson distri-
butions provide the best retrieval performance, while those
based on the Rayleigh and χ2 distributions are not as good
as expected. This indicates that the effectiveness of the mod-
els in the term frequency distribution fitting and the retrieval
is not necessarily completely related.

Second, the use of two different normalization methods
leads to in general comparable retrieval performance of our
proposed models, which conforms to our previous finding in
Section 3.3 that these two different normalization methods
lead to similar fitting effectiveness.

Third, our proposed NG models based on Weibull and
Poisson distribution can lead to comparable retrieval per-
formance with the baseline models as the performance is
sometimes not significant different between our models and
the BM25 model 5. As a matter of fact, without using global
statistics, we indeed have less information than the baseline
models, for instance the collection information, e.g. the doc-
ument frequency and the term frequency in the collection.
So our models’ performances mainly depend on what distri-
bution function to use and how to use them to describe the
real situation.

Finally, Figure 3 examines how the parameter setting af-
fects the NG models’ retrieval performance. From the ex-
periments, we find that the retrieval performance of the NG
models are highly sensitive to their parameters of their un-
derlying distribution functions, which can potentially hurt
the robustness of the models. In the next section, we im-
prove the robustness by a simplified DFR framework.

5.3 Improving the Robustness
In this section, we propose to improve the robustness of

the NG models. The underlying idea of our method is to fit
the relevance scores produced by a given NG model using a
function that is more simple than the information content
components in the original DFR framework (i.e. Inf1 · Inf2
in Equation (4)). In IR applications, it is a common prac-
tise to simplify the mathematical forms that are relatively
complicated, in order to achieve an easier implementation
or a better robustness. For example, Robertson & Walker
simplified the 2-Poisson model by fitting the actual term fre-
quency distribution, which eventually led to the proposal of
the BM25 model [9, 10].

With an idea similar to [10], we propose a simple form of
the DFR framework as given by the following function:

score(d,Q) ∝
∑
t∈Q

qtf · (1− β · P (tf, t|d))

Following the similar steps of the distribution function
fitting in Section 3, we obtain β = 1. Thus, a simplified
DFR framework is given as follows:

score(d,Q) ∝
∑
t∈Q

qtf · (1− P (tf, t|d)) (14)

In Table 6, the retrieval performance of the simplified NG
models is compared to the state-of-the-art models, and the
NG models. The Poisson distribution is not suitable to the
simplified DFR framework because of the difficulty caused
by expanding the factorials using Stirling formula [1]. From
Table 6, we can see that the simplified NG models achieve
statistically significant improvement over the NG models on
most cases, showing that the simplified DFR framework can
indeed enhance the retrieval performance of the NG models.

Moreover, from Figure 3, we can see that the simpli-
fied NG models markedly reduce the parameter sensitivity.
Overall, the simplified NG models based on the Weibull esti-
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Table 5: Experimental results of the comparison between our proposed models and the baselines in Table 4.
Statistically significant difference with KLLM, PL2, and BM25 are marked with ∗, †, and ‡, respectively.
Coll. PL2d PLBd CL2d CLBd EL2d ELBd GL2d GLBd RL2d RLBd WL2d WLBd
disk1&2 .2044∗ † ‡ .2032∗ † ‡ .1630∗ † ‡ .1190∗ † ‡ .2004∗ † ‡ .2034∗ † ‡ .2004∗ † ‡ .1988∗ † ‡ .0664∗ † ‡ .0678∗ † ‡ .2024∗ † ‡ .2048∗ † ‡
disk4&5 .2301∗ † ‡ .2178∗ † ‡ .1936∗ † ‡ .1388∗ † ‡ .2294∗ † ‡ .2298∗ † ‡ .2289∗ † ‡ .2132∗ † ‡ .0541∗ † ‡ .0532∗ † ‡ .2300∗ † ‡ .2300∗ † ‡
WT10G .1934∗† .1808∗ † ‡ .1055∗ † ‡ .0739∗ † ‡ .1760∗ † ‡ .1926∗ † ‡ .1702∗ † ‡ .1286∗ † ‡ .0436∗ † ‡ .0486∗ † ‡ .1774∗ † ‡ .1878∗ † ‡
GOV2 .2855∗† .2705∗ † ‡ .1538∗ † ‡ .0715∗ † ‡ .2778∗ † ‡ .2844∗ † ‡ .2635∗ † ‡ .2580∗ † ‡ .0305∗ † ‡ .0200∗ † ‡ .2890∗† .2890∗†

Table 6: Experimental results using the simplified NG models, whose model names end with an S for simplified.
Statistically significant difference with KLLM, PL2, and BM25 (see in Table 4) are marked with ∗, †, and ‡,
respectively. A 	 indicates a statistically significant improvement over the corresponding model in Table 5,
e.g. on disk1&2, R2dS leads to a statistically significant difference over RL2d, which is marked by a 	.
Coll. C2dS CBdS E2dS EBdS G2dS GBdS R2dS RBdS W2dS WBdS
disk1&2 .1924∗ † ‡	 .1974∗ † ‡	 .1967∗ † ‡ .1966∗ † ‡ .1898∗ † ‡ .1918∗ † ‡	 .1664∗ † ‡	 .1656∗ † ‡	 .2029∗ † ‡ .2048∗ † ‡
disk4&5 .2245∗ † ‡	 .2284∗ † ‡	 .2258∗ † ‡ .2247∗ † ‡ .2283∗ † ‡ .2280∗ † ‡	 .2104∗ † ‡	 .1930∗ † ‡	 .2304∗ † ‡ .2284∗ † ‡
WT10G .1857∗ † ‡	 .1946∗ † 	 .1844∗ † ‡	 .1871∗ † ‡	 .1904∗ † ‡	 .1934∗ † 	 .1365∗ † ‡	 .1276∗ † ‡	 .1934∗† .1920∗†
GOV2 .2590∗ † ‡	 0.2586∗ † ‡	 .2664∗ † ‡ .2630∗ † ‡ .2804∗ † ‡	 .2866∗ † 	 .2012∗ † ‡	 .1938∗ † ‡	 .2884∗† .2878∗†

mation of the term frequency distribution, especially W2dS,
has demonstrated the best retrieval effectiveness and robust-
ness out of all the NG models proposed. Therefore, it is rec-
ommended to apply the W2dS model in large-scale IR appli-
cations where it is difficult to maintain the global statistics.

6. CONCLUSIONS AND FUTURE WORK
We have conducted a thorough study of the term fre-

quency distribution on recent TREC collections. Six differ-
ent distribution functions are used to fit the actual frequency
distribution of query terms from TREC collections. Our ex-
perimental results show that apart from Poisson distribution
there are other probabilistic models of term occurrences are
suitable for describing the term frequency distribution in
document collections.

Based on the above finding, we have proposed a list of the
NG models generated from the DFR framework. A unique
feature of the NG models is the exclusion of global statistics.
Extensive experiments on four TREC test collections show
that our proposed NG models can provide acceptable re-
trieval performance for ad-hoc search. In addition, we have
improved the robustness of the NG models by fitting rele-
vance scoring fitting using simplified NG models. Finally,
it is recommended to apply th W2dS model based on the
Weibull distribution in large-scale IR applications, for its
effectiveness and robustness.

While our proposed models’ evaluation results are not
good enough, and as to we have conducted a wide investiga-
tion about which distributions can be deployed, we plan to
refine the form of the distributions appeared in the weighting
formula in the future to improve the performance.Besides.
Devising a method that automatically estimates the param-
eters on a per-term basis without the use of global statistics
is also scheming. Another future research direction is to in-
vestigate the application of query expansion and the term
proximity models [6] on top of the NG models. Finally,
we plan to investigate the effectiveness of the proposed NG
models in large-scale distributed IR applications such as in
peer-to-peer networks or sensor networks in practise.
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Appendix: Table 7 explains the notations in naming the NG
models.

Table 7: Naming of the proposed NG models.
Distribution function for P (tf, t|d)

P: Poisson, Eq. 7 C: χ2, Eq. 12
E: Exponential, Eq. 9 RL: Rayleigh, Eq. 11
WB: Weibull, Eq. 10 G: Gamma, Eq. 8

Inf2 in Eq. 4

L: Laplace succession, 1
tf+1

Term frequency normalization
2: Normalization 2, Eq. 5 B: BM25’s normalization, Eq. 2

Suffix of the model name
d: NG model derived from the original DFR framework in Eq. 4
dS: NG model derived from the simplified DFR framework in Eq. 14
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