Low Cost Evaluation for Diversity and Novelty

Kai Hui Max-Planck-Institut für Informatik, D5 khui@mpi-inf.mpg.de

Outline

- Background
- Motivation
- Preliminary Results
- Related Work
- Our Method
- Next Steps

Background: Diversity and Novelty Evaluation

TREC Diversity and Novelty Example

Query: No. 196 from WT2012

Query: sore throat

Subtopic 1: What causes a sore throat?

Subtopic 2: Find home remedies for a sore throat.

Subtopic 3: Find information on throat cancer.

Subtopic 4: What does it mean when my throat is sore on only one side?

Manual Label Example								
Query-id	Subtopic	Docid	Label					
196	1	clueweb09-enwp02-06-01125	1					
196	2	clueweb09-enwp02-06-01125	0					
196	3	clueweb09-enwp02-06-01125	1					
196	4	clueweb09-enwp02-06-01125	0					

Diversity and Novelty Measure Example: ERR-IA

$$ERR - IA = \sum_{top-k} \frac{1}{k} \sum_{subtopic \ i} g_{k,i} (1-\alpha)^{c(k,i)}$$

 $g_{k,i}$: relevance labels for the k-th document on subtopic i

c(k, i): the count of relevant documents for subtopic *i* before the *k*-th document

- α : the parameter for penalizing the repeating subtopics, normally set as 0.5
- Apart from ERR-IA, α-nDCG and NRBP are also popular measures.
- Their definition is directly based on the relevance labels, thus the evaluation quality highly depends on the labels.

Datasets

Document Collections

- ClueWeb09 Category A (CwA): 500 M English web pages
- ClueWeb09 Category B (CwB): 50 M English web pages
- Constructed Dataset (CwC): **450 M web pages from CwA but not in CwB**

Query Sets and Labels

- TREC Web Track (WT) 2009-2012, 200 queries with their labeled documents
- Runs for evaluation: 48 for 2009, 32 for 2010, 62 for 2011, and 48 for 2012

Objective

- Reconstruct the ranking of runs according to ERR-IA with incomplete judgments
- Kendall's τ is used to measure the correlation among rankings
- Kendall's τ: scaled between -1 and 1

(Number of Concordant Pairs)–(Number of Discordant Pairs)

Total Number of Pair Combinations

Motivation: Towards Lost Cost Evaluation

Cost of Evaluation

- Top-k pooling: collect top-k from all candidate runs to generate a pool
- Manually label every subtopic document pair in the pool
- Limit to shallow pooling depth, e.g., top-25

Year	#Query	#Systems	Pooling size	#Total labeled doc	#Labeled Relevant doc
2009	50	48	20	24,817	4,942
2010	50	32	20	15,352	6,553
2011	50	62	25	19,344	5,030
2012	50	48	20/30	16,036	5,559

Low Cost Evaluation Framework

Three Components in Evaluation:

Selects fewer candidate documents to label

- **Better discriminating ability**, e.g., only few systems can return a certain relevant document
- Based on document content, e.g., centroid documents in the similarity space are more representative
- Combine the above two methods

Reuses existing labels.

- Regard unlabeled as irrelevant
- Remove unlabeled documents
- Predict labels for the unlabeled documents

Preliminary Results: Label Fewer Documents & Reuse the Labels

Randomly Select Fewer Documents to Label

Percentage of available labels with random sampling versus the Kendall's tau correlation, repeating 30 times: evaluation with 60% of labels is not reliable

 Lost cost evaluation can't be realized by simply random sampling, and the evaluation is sensitive to the completeness of the labels

How to Select?

- Left: percentage of relevant (red) / total (blue) w.r.t. the pooling depth
- Right: percentage of total labels w.r.t. the relevant labels
- Relevant documents distribute not uniformly on the pooling depth, i.e., shallow pool contain larger portion of the relevant documents

Select According to the Rank from Rival Systems

Preliminary Results: Labels on Shallow Pool Simulate Complete Evaluation Perfectly

- Kendall's tau correlation between the ranking determined by full judgment w.r.t. the judgment on different pooling depth, for measures ERR-IA, α-nDCG and the NRBP
- Label on top-6 pool (40% of total label) is enough to get over 0.9 correlation w.r.t. complete judgment
- We can also use document content or discriminating ability etc.

Difficulties in Reusing the Labels: Unlabeled Documents

X-axis: Pooling DepthY-axis: Number of new relevant documents

How many do we miss? (Zobel, 98)

- Count the number of new relevant documents in pool@i given labeled pool@i-1
- Fit the curve for existing pool and predict for deeper pool, e.g., pool@100
 - Pool@20 covers 25% 30% relevant documents
 - Unlabeled relevant documents are due to their low rank, e.g., rank at 50

Why do the unlabeled documents exist?

Incomplete coverage of the relevant documents in existing judged pool.

Existence of the Unlabeled Documents: Predict the Labels

When might they exist?

- When evaluates systems not included in the pooling
- On a new document collection
- When going deeper than the pooling depth, e.g., ERR-IA@30

Why are they problematic?

- Direct dependence on the labels, e.g., ERR-IA
- Missing labels have to be mitigated before evaluation

How to deal with them?

- Regard unlabeled as irrelevant: underestimates (Sakai et.al, 12)
- Remove unlabeled documents (condensed list): overestimate (Sakai et.al, 12)
- Predict the labels for unseen documents (Büttcher et.al, 07)(Carterette & Allan, 07)

Reuse the Existing Labels

Leave N Out: Evaluate Systems without Contribution to the Pool

- Percentage of certain percentage of systems versus the Kendall's tau correlation, repeating 30 times: evaluation with less than 50%-60% systems contributing labels is not reliable
- The existing measurement is not reusable, being biased towards systems without contributions to the pool

Brief Review of Related Works

Related Work for Low Cost Evaluation

- Sample documents to be labeled: Identify the crucial documents to label by selecting documents with best discriminating ability, like MTC. (Carterette et. al, 06)
- Learning to predict the missing labels

Mitigate the missing labels by predicting labels. Only has been tested for mitigating small portion of missing labels on adhoc task. (Büttcher, 07) (Carterette & Allan, 07)

Condensed list of relevance judgment

Remove all the unjudged documents instead of regarding them as irrelevant, tend to over-estimate the unlabeled systems. (Sakai, 13)

Reduces query numbers:

Use fewer queries for testing and conclude statistical significant result. Most are retrospective method, the performance is unclear. (Robertson, 11)

Our Works on Reusable Evaluation: Results for Pointwise Prediction & Listwise Prediction

Mitigate the Unlabeled Documents: Predict the Missing Labels

Given query, subtopics, and top-k documents to evaluate. **Options for prediction:**

- **Pointwise prediction** (Büttcher et.al 07) (Carterette & Allan, 07) <query, subtopic, doc>: <relevant, irrelevant>
- Pairwise prediction (A promising method, future work):
- 1) <query, doc_1>: <relevant, irrelevant> <query, doc_2>: <relevant, irrelevant>
- 1) <query, subtopics, doc_1, doc_2 >: <same subtopic, different subtopics>
- Listwise prediction
 query, subtopics, top-k docs>: the diversity and relevance of top-k docs

Results for Pointwise Prediction

Predict Labels for Document Subtopic Pair

Prediction Setting

- Given information of query, subtopic and the tf-idf for each documents
- Select terms with the decreasing order of the collection frequency
- Similar setting with (Büttcher et.al 07)

Learning Tools

- Scikit package based on python (http://scikit-learn.org/)
- Use Naïve Bayern, Linear Regression and the SVM to train
- With default setting of the parameters from the toolkit

Performance

- Partially mitigate the missing labels, can reconstruct the ranking of systems with as less as 40%-50% available labels
- ? Why we need listwise prediction.....

Evaluation on Randomly Selected Fewer Labels

- Percentage of available labels with random sampling versus the Kendall's tau correlation, repeating 6 times: evaluation with 40%-50% of labels is not reliable
- Pointwise prediction can partially mitigate the missing labels

Listwise Prediction Reusable Measure Framework & Current Method

Given query and its t subtopics: Merge all corresponding relevant documents to generate the LM for each subtopic.

Given top-k documents to evaluate

Compute KL-divergence at each position i, e.g., top-i, and for each subtopic. Get a k×t distance matrix.

Compute measure based on the distance matrix

Given distance matrix:

Summarize the distance matrix $D_{k,t}$ with simple function, i.e., Abs and Delta.

Listwise Prediction

Describe the Shift & Map the Shift to Measure

 KL-divergence. On each subtopic i, compute the divergence between the subtopic LM (i) and the top-k LM at each position k, computing the divergence matrix to describe the shift procedure

- Other options to replace distance(top k, t th subtopic): use the probability to compute the $D_{k,t}$
- Final step: map each $D_{k,t}$ to a effective measure, i.e., a real value

Evaluation: Robustness with Incomplete Labels

Percentage of Available Labels VS Correlation for 4 years

X-axis: Percentage of labels Y-axis: Correlation against system ranking with complete labels

Evaluation: Reuse Labels to Evaluate Unlabeled System

Evaluation: Reuse Labels on New Document Collection

Kendall's τ Correlation with Label Based Measures

		AbsNb	AbsRb	DeltaNb	DeltaRb
2009	α -nDCG	.72	.70	.73	.69
	ERR-IA	.78	.78	.76	.76
	NRBP	.74	.74	.70	.74
2010	α -nDCG	.72	.66	.74	.76
	ERR-IA	.70	.66	.72	.75
	NRBP	.68	.65	.71	.73
2011	α -nDCG	.71	.76	.79	.81
	ERR-IA	.67	.75	.73	.81
	NRBP	.64	.74	.69	.79
2012	α -nDCG	.23	.40	.31	.51
	ERR-IA	.26	.44	.31	.54
	NRBP	.26	.45	.31	.54

Generate subtopic distribution on CWB and evaluate runs on CWC

Next Steps:

- Reusable Evaluation
- Select Documents to Label

Future Works in Low Cost Evaluation

Reusable Evaluation:

- Generation of subtopic distribution: text summarization, snippet generation etc..
- Regression: from distance matrix to the value of effectiveness measure *Measure Score* = f(Abs, Delta)
- Pairwise/Pointwise prediction to predict the missing labels

Select Documents to Label:

 Select documents combining the discriminating ability of the documents and of the document content

Reference

- T. Sakai, Z. Dou, R. Song, and N. Kando: The reusability of a diversified search test collection. In Proceedings of AIRS 2012, pages 26–38, 2012
- Justin Zobel: How reliable are the results of large-scale information retrieval experiments?, Proceedings
 of the 21st annual international ACM SIGIR conference on Research and development in information
 retrieval, p.307-314, August 24-28, 1998, Melbourne, Australia.
- Stefan Büttcher, Charles L. A. Clarke, Peter C. K. Yeung, Ian Soboroff: Reliable information retrieval evaluation with incomplete and biased judgments, Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, July 23-27, 2007, Amsterdam, The Netherlands
- Ben Carterette, James Allan: Semiautomatic evaluation of retrieval systems using document similarities, Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, November 06-10, 2007, Lisbon, Portugal
- Ben Carterette, James Allan, Ramesh Sitaraman: Minimal test collections for retrieval evaluation, Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, August 06-11, 2006, Seattle, Washington, USA
- Robertson, S: On the contributions of topics to system evaluation. In *European conference on information retrieval* (pp. 129–140).
- T. Sakai: The unreusability of diversified search test collections. In Proceedings of EVIA 2013, 2013.

