Relevance Weighting using Within-document Term Statistics

Kai Hui, Ben He

huikai10@mails.gucas.ac.cn benhe@gucas.ac.cn **Tiejian Luo, Bin Wang**

> tjluo@gucas.ac.cn wangbin@ict.ac.cn

Research Motivation Fitting the TF Distribution Propose NG Models Evaluation & Simplified NG Models Conclusion & Future works

СІҚМ2011

Research Motivation

✓ Problem

Traditional popular models apply global statistics (Document frequency, Token numbers in the collections). Sometimes, it is difficult or infeasible to get Global Statistics

✓ Take PL2 based on DFR for Example The DFR framework (G. Amati, C. J. van Rijsbergen, 2002) $score(d, Q) = \sum_{t \in Q} qtf \cdot Inf_1 \cdot Inf_2 \quad Inf_1 = -\log_2 P(t, tf \mid d) \quad Inf_2 = \frac{1}{tfn + 1}$ $\sum_{t \in Q} qtf \cdot \frac{1}{tfn + 1} (tfn \cdot \log_2 \frac{tfn}{\lambda} + (\lambda + \frac{1}{12 \cdot tfn} - tfn) \cdot \log_2 e + 0.5 \cdot \log_2 (2\pi \cdot tfn))$

Derived from Bernoulli Process, use global statistics

✓ Our Solutions

$$score(d,Q) = \sum_{t \in Q} qtf \cdot Inf_1 \cdot Inf_2$$
$$= \sum_{t \in Q} qtf \cdot (-\log_2 P(t,tf \mid d)) \cdot \frac{1}{1+tfn}$$

Approximate by fitting tf with a series of distribution functions,

without using global statistics

NG models: Propose NG models (No Global statistics models) by replacing P with the tf distribution function

Fitting the TF Distribution

tf Distribution

- Zipf's law: CF is inversely proportional to its rank in the a. frequency table
- Harter, 1975: 2-Poisson assumption over a sample from b. works of Sigmund Freud

✓ Fitting Process

- Recent datasets have been used in our fitting а.
- A list of potentially appropriate distribution functions have b. been tested

Graduate University of

\checkmark The datasets

Coll.	TREC Task	Topics	#Docs
disk1&2	1,2,3 ad-hoc	51-200	741,856
disk4&5	Robust 2004	301-450,601-700	528,155
WT10G	9,10 Web	451-550	1,692,096
GOV2	2004-2006 Terabyte Ad-hoc	701-850	25,178,548

- Standard preprocesses are conducted: stop words, stemmer
- Only the terms in the title field are used

Fitting the TF Distribution ✓ P-P graphs: 6 distributions on 4 datasets

СІҚМ2011

$$\int \operatorname{Propose} \mathcal{NG} \operatorname{models}$$

$$score(d, Q) = \sum_{t \in Q} qtf \cdot Inf_1 \cdot Inf_2$$

$$= \sum_{t \in Q} qtf \cdot (-\log_2 P(t, tf \mid d)) \cdot \frac{1}{1 + tfn}$$

Treat parameters as FREE PRAMETERS which are tunable Take the WL2d model as example:

$$score_{WL2d}(d,Q) = \sum_{t \in Q} qtf \cdot (-\log_2 \frac{k}{\lambda} (\frac{tfn}{\lambda})^{k-1} e^{-(\frac{tfn}{\lambda})^k}) \cdot \frac{1}{1 + tfn}$$

Normalization2 in DFR framework:

Propose NG Models

$$tfn = tf \cdot \log_2(1 + c \cdot (\frac{avg_l}{l})), (c > 0)$$

1

Randomly

sample an ID

Divide collection

into groups

- b. Randomly sampling one number(X) within 1 to N
- c. Recording the document length of No. X in every groups and computing the sample average document length

Compute the

average length

СІҚМ2011

✓ Estimate the average document length

Propose NG Models

Coll.	EstL	avg_l	Error(%)
disk1&2	266.10	261.30	1.84
disk4&5	301.22	297.10	1.39
WT10G	406.68	399.28	1.85
GOV2	673.76	648.42	3.91

Coll.	Avg.(%)	MaxPos(%)	MinNeg(%)	CV
disk1&2	3.15	3.55	-9.23	0.8348
disk4&5	2.72	2.98	-6.80	0.7021
WT10G	3.07	3.90	-8.38	0.8306
GOV2	3.89	0.53	-8.37	0.4470

Evaluation & Simplified NG models

✓ Evaluation Settings

- a. Baseline: BM25, KL-divergence language model, PL2
- b. Platform: In-house version of the Terrier toolkit
- c. Validation: Two-fold cross-validation
- d. Evaluation measure: Mean Average Precision (MAP) and statistical significance are based on Wilcoxon matched-pairs signed-rank at .05 level

СІКМ2011

Evaluation & Simplified NG models

СІКМ2011

Coll.	disk1&2	disk4&5	WT10G	GOV2
KLLM	.2351	.2565	.2153	.3028
PL2	.2336	.2570	.2126	.3042
BM25	.2404	.2535	.2080	.2997
WL2d	.2024	.2300	.1774	.2890
WLBd	.2048	.2300	.1878	.2890
PL2d	.2044	.2301	.1934	.2855
PLBd	.2032	.2178	.1808	.2705
EL2d	.2004	.2294	.1760	.2778
ELBd	.2034	.2298	.1926	.2844
GL2d	.2004	.2289	.1702	.2635
GLBd	.1988	.2132	.1286	.2580
CL2d	.1630	.1936	.1055	.1538
CLBd	.1190	.1388	.0739	.0715
RL2d	.0664	.0541	.0436	.0305
RLBd	.0678	.0532	.0486	.0200

✓ Results

<u>Evaluation & Simplified NG</u> models ✓ Simplified NG models

СІКМ2011

- Free parameters: Robustness is important in our model a. performance
- **Simplify models:** Replace Inf1 · Inf2 with formulae b. having same shape

$$score(d,Q) = \sum_{t \in Q} qtf \cdot (-\log_2 P(t,tf \mid d)) \cdot \frac{1}{1+tfn}$$

$$score(d,Q) \propto \sum_{t \in Q} qtf \cdot (1-P(tf,t \mid d))$$
Graduate University of Graduate University of Chinese Academy of Sciences

Evaluation & Simplified NG models

СІҚМ2011

<u>Evaluation & Simplified NG</u> models C. V The results of the simplified NG models

Coll.	disk1&2	disk4&5	WT10G	GOV2
KLLM	.2351	.2565	.2153	.3028
PL2	.2336	.2570	.2126	.3042
BM25	.2404	.2535	.2080	.2997
W2dS	.2029	.2304	.1934	.2884
WBdS	.2048	.2284	.1920	.2878
E2dS	.1967	.2258	.1844	.2644
EBdS	.1966	.2247	.1871	.2630
G2dS	.1898	.2283	.1904	.2804
GBdS	.1918	.2280	.1934	.2866
C2dS	.1924	.2245	.1857	.2590
CBdS	.1974	.2284	.1946	.2586
R2dS	.1664	.2104	.1365	.2012
RBdS	.1656	.1930	.1276	.1938

Conclusion and Future Work

- СІҚМ2011
- Apart from Poisson distribution there are other
 probabilistic models are suitable to describe the TF
 distribution
- b. A list of NG models generated from the DFR framework are proposed,
- We improved the robustness of the NG models and
 W2dS can achieve better results
- Both fitting results and the retrieval performance should be improved further.
- b. The QE models for the NG model can be discovered

Thank you ~Any Questions~

